Effect of Sodium Taurocholate on Aggregation Behavior of Amphiphilic Drug Solution
-
Dileep Kumar
Abstract
The aggregation behavior of promazine hydrochloride (PMZ) and bile salt (sodium taurocholate (NaTC)) mixtures at various compositions and temperature in pure and mixed states were studied using conductometry technique in aqueous solutions. The values of experimental and ideal critical micelle concentration (cmc and cmcid) propose attractive interactions in PMZ-NaTC mixtures. By applying the regular solution theory (RST) various physicochemical parameter such as micellar mole fraction in the mixed (X1) and ideal (X1id) state, interaction parameters (β), thermodynamic parameters of micellization as well as other related parameters have been evaluated and discussed in detail. The results show that the synergistic effect between drug and bile salt plays a crucial role in the redtdprefuction of the overall cmc value in aqueous solution at various composition of NaTC. The thermodynamic parameters recommend the discharge of water from the hydrophobic part of the PMZ at higher temperatures.
Kurzfassung
Es wurde das Aggregationsverhalten wässriger Mischungen aus Promazinhydrochlorid (PMZ) und Gallensalz (Natriumtaurochlorat, NaTC) bei verschiedenen Zusammensetzungen und das der reinen wässrigen Komponenten konduktometrisch bei verschiedenen Temperaturen bestimmt. Die experimentell bestimmten und die idealen kritischen Mizellenbildungskonzentrationen (cmc und cmcid) weisen auf anziehende Wechselwirkungen in den PMZ-NaTC-Mischungen hin. Unter Anwendung der Theorie der regulären Lösungen (regular solution theory, RST) konnten verschiedene physico-chemische Parameter wie die mizellaren Molenbrüche im Misch- (X1) und im idealen (X1id) System, die Wechselwirkungsparameter (β), die thermodynamischen Parameter der Mizellisierung, sowie weitere damit verbundene Parameter berechnet und detailliert diskutiert werden. Die Ergebnisse zeigen, dass der synergistische Effekt zwischen Wirkstoff und dem Gallensalz eine entscheidende Rolle bei der Reduktion der Gesamt-cmc in den wässrigen Lösungen mit verschiedenen NaTC-Konzentrationen spielt. Die thermodynamischen Parameter weisen auf einen Austritt von Wasser aus dem hydrophoben Teil des PMZ bei höheren Temperaturen hin.
References
1. Schreier, S., Malheiros, S. V. P. and de Paula, E.: Biochim. Biophys. Acta1508 (2000)) 210. 10.1016/S0304-4157(00)00012-5Search in Google Scholar
2. Kabir-ud-Din, Naqvi, A. Z., and Khan, A. B.: Tenside Surf. Detergents47 (2010)) 318. 10.3139/113.110084Search in Google Scholar
3. Azum, N., Rub, M. A. and Asiri, A. M.: J. Mol. Liquids196 (2014)) 14. 10.1016/j.molliq.2014.03.008Search in Google Scholar
4. Rub, M. A., Asiri, A. M., Azum, N., Khan, A., Khan, A. A. P. and Kabir-ud-Din: Tenside Surf. Detergents50 (2013)) 376. 10.3139/113.110270Search in Google Scholar
5. Azum, N., Rub, M. A. and Asiri, A. M.: Colloids Surf. B121 (2014)) 158. 10.1016/j.colsurfb.2014.06.009Search in Google Scholar PubMed
6. Rub, M. A., Khan, F., Kumar, D. and Asiri, A. M.: Tenside Surf. Detergents52 (2015)) 236. 10.3139/113.110371Search in Google Scholar
7. Torchilin, V. P.: Cell. Mol. Life Sci.61 (2004)) 2549. 10.1007/s00018-004-4153-5Search in Google Scholar PubMed
8. Caetano, W. and Tabak, M.: J. Colloid Interface Sci.225 (2000)) 69. 10.1006/jcis.2000.6720Search in Google Scholar PubMed
9. Mahajan, R. K., Mahajan, S., Bhadani, A. and Singh, S.: Phys. Chem. Chem. Phys.14 (2012)) 887,. 10.1039/c1cp22448dSearch in Google Scholar PubMed
10. Rub, M. A., Asiri, A. M., Khan, J. M., Khan, F. and Khan, R. H.: J. Taiwan Institute Chem. Eng.45 (2014)) 2068. 10.1016/j.jtice.2014.04.024Search in Google Scholar
11. Mahajan, S. and Mahajan, R. K.: Adv. Colloid Interface Sci.199–200 (2013)) 1. 10.1016/j.cis.2013.06.008Search in Google Scholar PubMed
12. Azum, N., Rub, M. A. and Asiri, A. M.: Pharmaceutical Chem. J.48 (2014)) 201. 10.1007/s11094-014-1077-8Search in Google Scholar
13. Kaushal, D., Rana, D. S., Chauhan, M. S., Umar, A. and Chauhan, S.: J. Mol. Liq.188 (2013)) 237. 10.1016/j.molliq.2013.09.030Search in Google Scholar
14. Rub, M. A., Azum, N., Kumar, D., Asiri, A. M. and Marwani, H. M.: J. Chem. Thermodyn.74 (2014)) 91,. 10.1016/j.jct.2014.01.005Search in Google Scholar
15. Gokturk, S. and Aslan, S.: J. Dispersion Sci. Technol.35 (2014)) 84,. 10.1080/01932691.2013.775583Search in Google Scholar
16. Attwood, D. and Florence, A. T.: Surfactant Systems: Their Chemistry, Pharmacy and Biology, New York, Chapman (1983). 10.1007/978-94-009-5775-6. 10.1007/978-94-009-5775-6Search in Google Scholar
17. O’Connor, C. J. and Wallace, R. G.: Adv. Colloid Interface Sci.22 (1985)) 1,. 10.1016/0001-8686(85)80002-6Search in Google Scholar
18. Maldonado-Valderrama, J., Wilde, P., Macierzank, A. and Mackie, A.: Adv. Colloid Interface Sci.165 (2011)) 36,. 10.1016/j.cis.2010.12.002Search in Google Scholar PubMed
19. Hofmann, A. F.: Bile Acids in Hepatobiliary Disease, edited by Northfield, T. C., Ahmed, H., Jazrawi, R., and Zentler-Munro, P. L., Boston, Kluwer (1999). ISBN: 0-7923-8755-4.Search in Google Scholar
20. Small, D. M.: The Bile Acids: Chemistry, Physiology and Metabolism, edited by Nair, P. P. and Kritchevsky, D., vol. 1, New York, Plenum (1971). ISBN: 978-1-4757-0649-9.Search in Google Scholar
21. Madenci, D. and Egelhaaf, S. U.: Curr. Opin. Colloid Interface Sci.15 (2010)) 109. 10.1016/j.cocis.2009.11.010Search in Google Scholar
22. Weber, L. P. and Lanno, R. P.: Environ. Toxicol. Chem.20 (2001)) 1117. 10.1002/etc.5620200525Search in Google Scholar
23. Hildebrand, A., Neubert, R., Garidel, P. and Blume, A.: Langmuir18 (2002)) 2836. 10.1021/la011421cSearch in Google Scholar
24. Ninomiya, R., Matsuoka, K. and Moroi, Y.: Biochim. Biophys. Acta1634 (2003)) 116. 10.1016/j.bbalip.2003.09.003Search in Google Scholar PubMed
25. Ross, B. P., Braddy, A. C., McGeary, R. P., Blanchfield, J. T., Prokai, L. and Toth, I.: Mol. Pharmaceutics1 (2004)) 233. 10.1021/mp049964dSearch in Google Scholar PubMed
26. Zana, R. and Guveli, D.: J. Phys. Chem.89 (1985)) 1687. 10.1021/j100255a028Search in Google Scholar
27. Li, G. and McGown, L. B., J. Phys. Chem.98 (1994)) 13711. 10.1021/j100102a043Search in Google Scholar
28. Rub, M. A., Asiri, A. M., Kumar, D., Azum, N. and Khan, F.: Acta Phys.-Chim. Sin.30 (2014)) 699. 10.3866/PKU.WHXB201402112Search in Google Scholar
29. Kumar, D., Rub, M. A., Akram, M. and Kabir-ud-Din: Tenside Surf. Detergents51 (2014)) 157. 10.3139/113.110296Search in Google Scholar
30. Rub, M. A., Asiri, A. M., Khan, J. M., Khan, R. H. and Kabir-ud Din: J. Mol. Struc.1050 (2013)) 35. 10.1016/j.molstruc.2013.07.010Search in Google Scholar
31. Kumar, D., Rub, M. A., Akram, M. and Kabir-ud Din: Spectrochimica Acta A132 (2014)) 288. 10.1016/j.saa.2014.05.002Search in Google Scholar PubMed
32. Barker, C. A., Saul, D., Tiddy, G. J. T., Wheeler, B. A. and Willis, E.: J. Chem. Soc., Faraday Trans. 170 (1974)) 154. 10.1039/F19747000154Search in Google Scholar
33. Vethamuthu, M. S., Almgren, M., Karlsson, G. and Bahadur, P.: Langmuir12 (1996)) 2173. 10.1021/la950964hSearch in Google Scholar
34. Elworthy, P. H., Florence, A. T. and Macfarlane, G. B.: Solubilization by Surface-Active Agents and Its Application in Chemistry and Biological Sciences, Suffolk, Chapman and Hall (1968). OCLC Number: 896700385.Search in Google Scholar
35. Jana, P. K. and Moulik, S. P.: J. Phys. Chem.95 (1991)) 9525. 10.1021/j100176a089Search in Google Scholar
36. Rub, M. A., Sheikh, M. S., Asiri, A. M., Azum, N., Khan, A., Khan, A. A. P., Khan, S. B. and Kabir-ud Din: J. Chem. Thermodynamics64 (2013)) 28. 10.1016/j.jct.2013.04.020Search in Google Scholar
37. Clint, J. H.: Surfactant Aggregation, New York, Blackie/Chapman and Hall (1992). 10.1007/978-94-011-2272-6Search in Google Scholar
38. Nonionic Surfactants: Physical Chemistry, edited by Schick, M. J., New York, Dekker (1987). 10.1080/01932699008943267Search in Google Scholar
39. Mosquera, V., del Rio, J. M., Attwood, D., Garcia, M., Jones, M. N., Prieto, G., Suarez, M. J. and Sarmiento, F.: J.: Colloid Interface Sci.206 (1998)) 66. 10.1006/jcis.1998.5708Search in Google Scholar PubMed
40. Kabir-ud-Din, Siddiqui, U. S., Kumar, S. and Dar, A. A.: Colloid Polym. Sci.284 (2006)) 807. 10.1007/s00396-005-1449-4Search in Google Scholar
41. Ruiz, C. C., Diaz-Lopez, L. and Aguiar, J.: J. Colloid Interface Sci.305 (2007)) 293. 10.1016/j.jcis.2006.09.074Search in Google Scholar PubMed
42. Chen, L.-J., Lin, S.-Y., and Huang, C.-C.: J. Phys. Chem. B102 (1998)) 4350. 10.1021/jp9804345Search in Google Scholar
43. Islam, M. N. and Kato, T.: J. Phys. Chem. B107 (2003)) 965. 10.1021/jp021212gSearch in Google Scholar
44. Lopez-Fontan, J. L., Costa, J., Ruso, J. M., Prieto, G. and Sarmiento, F.: J. Chem. Eng. Data49 (2004)) 1008. 10.1021/je049954lSearch in Google Scholar
45. Rub, M. A., Asiri, A. M., Naqvi, A. Z., Rahman, M. M., Khan, S. B. and Kabir-ud Din: J. Mol. Liqs.177 (2013)) 19. 10.1016/j.molliq.2012.10.003Search in Google Scholar
46. Zana, R.: J.ColloidInterface Sci.78 (1980)) 330. 10.1016/j.molliq.2012.10.003Search in Google Scholar
47. Mukerjee, P.: Adv. Colloid Interface Sci.1 (1967)) 242. 10.1016/j.molliq.2012.10.003Search in Google Scholar
48. Iijima, H., Kato, T. and Soderman, A.: Langmuir16 (2000)) 318. 10.1021/la9902688Search in Google Scholar
49. Asakawa, T., Kitano, H., Ohta, A. and Miyagishi, S.: J. Colloid Interface Sci.242 (2001)) 284. 10.1006/jcis.2001.7875Search in Google Scholar
50. Rubingh, D. N.: Solution Chemistry of Surfactants, edited by Mittal, K. L., New York, Plenum Press (1979). 10.1007/978-1-4615-7880-2Search in Google Scholar
51. Motomura, K., Yamanaka, M. and Aratono, M.: Colloid Polym. Sci.262 (1984)) 948. 10.1007/BF01490027Search in Google Scholar
52. Rodenas, V., Valiente, M. and Villafruela, M. S.: J. Phys. Chem. B103 (1999)) 4549. 10.1021/jp981871mSearch in Google Scholar
53. Lange, H. and Beck, K. H.: Kolloid Z. Z. Polym.251 (1973)) 424. 10.1007/BF01498689Search in Google Scholar
54. Peyre, V.: Langmuir18 (2002)) 1014. 10.1021/la0107345Search in Google Scholar
55. Makayssi, A., Lemordant, D. and Triener, C.: Langmuir9 (1993)) 2808. 10.1021/la00035a014Search in Google Scholar
56. Eads, C. D. and Robosky, L. C.: Langmuir15 (1999)) 2661. 10.1021/la980525tSearch in Google Scholar
57. Bergstrom, L. M. and Aratono, M.: Soft Matter7 (2011)) 8870. 10.1039/C1SM06064CSearch in Google Scholar
58. Rodriguez, J. L., Minardi, R. M., Schulz, E. P., Pieroni, O. and Schulz, P. C.: J. Surf. Deterg.15 (2012)) 147. 10.1007/s11743-011-1302-3Search in Google Scholar
59. Mixed Surfactant Systems, edited by Ogino, K. and Abe, M., New York, Marcel Dekker (1993). ISBN: 0-8247-8796-X.Search in Google Scholar
60. Liu, L. and Rosen, M. J.: J. Colloid Interface Sci.179 (1996)) 454. 10.1006/jcis.1996.0237Search in Google Scholar
61. Zhou, Q. and RosenM.J.: Langmuir19 (2003)) 4555. 10.1021/la020789mSearch in Google Scholar
62. Rub, M. A., Kumar, D., Azum, N., KhanF. and AsiriA. M.: J. Solution Chem.43 (2014)) 930. 10.1007/s10953-014-0174-3Search in Google Scholar
63. Rub, M. A., Sheikh, M. S., Khan, F., Khan, S. B. and Asiri, A. M.: Z. Phys. Chem.228 (2014)) 747. 10.1515/zpch-2013-0495Search in Google Scholar
64. Nusselder, J. J. H. and Engberts, J. B. F. N.: J. Colloid Interface Sci.148 (1992)) 353. 10.1016/0021-9797(92)90174-KSearch in Google Scholar
65. Hall, D. G.: J. Chem. Soc., Faraday Trans.87 (1991)) 3529. 10.1039/FT9918703529Search in Google Scholar
66. Azum, N., Rub, M. A., Asiri, A. M. and Marwani, H. M.: J. Mol. Liquids197 (2014)) 339. 10.1016/j.molliq.2014.06.009Search in Google Scholar
67. Rub, M. A., Azum, N., Khan, F., Al-Sehemi, A. G. and Asiri, A. M.: Korean J. Chem. Eng.32 (2015)) 2142. 10.1007/s11814-015-0019-9Search in Google Scholar
68. Maeda, H.: J. Phys. Chem. B109 (2005)) 15933. 10.1021/jp052082pSearch in Google Scholar PubMed
© 2015, Carl Hanser Publisher, Munich
Articles in the same Issue
- Contents/Inhalt
- Contents
- Hygiene and Washing
- Characterization of Microbial Communities in Household Washing Machines
- Hygiene in Domestic Laundering – Consumer Behavior in Germany
- Timesaving Washing of Textiles Utilizing 38 kHz Ultrasound
- Application
- Oil Extraction from Oil-Contaminated Drill Cuttings Using a Recyclable Single-Phase O/W Microemulsion
- Physical Chemistry
- Effect of Sodium Taurocholate on Aggregation Behavior of Amphiphilic Drug Solution
- Influence Prediction of Alkylamines Upon Electrical Percolation of AOT-based Microemulsions Using Artificial Neural Networks
- Effect of Tween 40 and Tween 60 on the Properties of a Cationic Slow-Set Emulsifier
- Magnetic Properties of Polyaniline/ZFe2O4 Nanocomposites Synthesized in CTAB as Surfactant and Ionic Liquid
- Novel Surfactants
- Ionic Liquid in Thin-Layer Chromatography of Anionic Surfactants: Selective Separation of Sodium Deoxycholate and Identification in Commercial Products
- Micellar Catalysis
- Combination of Best Promoter and Micellar Catalyst for Chromic Acid Oxidation of D-Arabinose in Aqueous Media at Room Temperature
- Environmental Chemistry
- Photocatalytic Degradation of Copper(II) Palmitates in Non Aqueous Media Using ZnO as Photocatalyst
Articles in the same Issue
- Contents/Inhalt
- Contents
- Hygiene and Washing
- Characterization of Microbial Communities in Household Washing Machines
- Hygiene in Domestic Laundering – Consumer Behavior in Germany
- Timesaving Washing of Textiles Utilizing 38 kHz Ultrasound
- Application
- Oil Extraction from Oil-Contaminated Drill Cuttings Using a Recyclable Single-Phase O/W Microemulsion
- Physical Chemistry
- Effect of Sodium Taurocholate on Aggregation Behavior of Amphiphilic Drug Solution
- Influence Prediction of Alkylamines Upon Electrical Percolation of AOT-based Microemulsions Using Artificial Neural Networks
- Effect of Tween 40 and Tween 60 on the Properties of a Cationic Slow-Set Emulsifier
- Magnetic Properties of Polyaniline/ZFe2O4 Nanocomposites Synthesized in CTAB as Surfactant and Ionic Liquid
- Novel Surfactants
- Ionic Liquid in Thin-Layer Chromatography of Anionic Surfactants: Selective Separation of Sodium Deoxycholate and Identification in Commercial Products
- Micellar Catalysis
- Combination of Best Promoter and Micellar Catalyst for Chromic Acid Oxidation of D-Arabinose in Aqueous Media at Room Temperature
- Environmental Chemistry
- Photocatalytic Degradation of Copper(II) Palmitates in Non Aqueous Media Using ZnO as Photocatalyst