Startseite Effect of Alcohols on Phase Stability of Ionic Liquid Microemulsions
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Effect of Alcohols on Phase Stability of Ionic Liquid Microemulsions

  • Yongjun Zheng und Yong Zheng
Veröffentlicht/Copyright: 15. September 2015
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Pseudo-ternary phase diagrams of 1-butyl-3-methylimidazolium hexafluorophosphate (bmimPF6) /Tween 80 (polyoxyethylene sorbitan monooleate)/alcohol/toluene systems were constructed with different linear-chain alcohols. The phase diagrams demonstrate that an increase in the surfactant/alcohol weight ratio yields a larger microemulsion domain. The different chain lengths of the alcohols affected the extent of the microemulsion region. Alcohols having short-chain lengths were optimum cosurfactants in bmimPF6-based microemulsion. Moreover, the influence on the microstructure of the single-phase area as a function of the alcohol chain was investigated using electrical conductivity. Preliminary investigations suggested that the bmimPF6-in-toluene region of systems which contain ethanol was notably magnified, and increasing in alcohol chain length (n = 4 – 10) led to a shrinkage for alcohols with longer chain length.

Kurzfassung

Es wurden pseudo-ternäre Phasendiagramme von Systemen aus 1-Butyl-3-methyl-imidazoliumhexafluorophosphat (bmimPF6) /Tween 80 (Polyoxyethylensorbitanmonooleate)/Alkohol/Toluen erstellt. Es wurden lineare Alkohole mit unterschiedlichen Alkylkettenlängen verwendet. Die Phasendiagramme zeigen, dass der Anstieg des Tensid-Alkohol-Verhältnisses zu einem größeren Mikroemulsionsbereich führt. Die unterschiedlichen Kettenlängen der Alkohole beeinflussen die Größe der Mikroemulsionsregion und Alkohole mit kurzen Ketten waren optimale Co-Tenside in der Mikroemulsion auf bmimPF6-Basis. Außerdem wurde der Einfluss auf die Mikrostruktur des Einphasenbereiches als Funktion der Alkoholkette mittels der elektrischen Leitfähigkeit untersucht. Vorhergehende Untersuchungen deuten darauf hin, dass die bmimPF6-in-Toluen-Region der Systeme, die Ethanol enthalten, deutlich vergrößert war und dass ein Anstieg der Alkoholkettenlänge (n = 4 – 10) zu einer Verkleinerung bei Alkoholen mit längerer Kettenlänge führte.


*Correspondence address, Dr. Yongjun Zheng, Department of Chemical & Environmental Engineering, Anyang Institute of Technology, Anyang, 455000, China, Tel.: +8 60 37 22 90 98 41, E-Mail:

Yongjun Zheng received his Ph. D. from the Graduate University of Chinese Academy of Sciences in 2009. He is now a teacher in the Anyang Institute of Techno-logy. His research interest focuses on the area of ionic liquid microemulsion.

Yong Zheng received his Ph. D. from the University of Chinese Academy of Sciences in 2013, He is now a teacher in the Anyang Institute of Technology. His research interest focuses on the area of ionic liquid.


References

1. Planeta, J. and Roth, M.: Partition coefficients of low-volatility solutes in the ionic liquid 1-n-butyl-3-methylimidazolium hexafluorophosphate–supercritical CO2 system from chromatographic retention measurements, J. Phys. Chem.B108 (2004) 1124411249. 10.1021/jp049094fSuche in Google Scholar

2. Welton, T.: Room-temperature ionic liquids. Solvents for synthesis and catalysis, Chem. Rev.99 (1999) 20712084. 10.1021/cr980032tSuche in Google Scholar PubMed

3. Dupont, J., de Souza, R. F. and Suarez, P. A. Z.: Ionic liquid (molten salt) phase organometallic catalysis, Chem. Rev.102 (2002) 36673692. 10.1021/cr010338rSuche in Google Scholar PubMed

4. Liu, J., Jiang, G., Chi, Y., Cai, Y., Zhou, Q. and Hu, J.: Use of ionic liquids for liquid-phase microextraction of polycyclic aromatic hydrocarbons, Anal. Chem.75 (2003) 58705876. 10.1021/ac034506mSuche in Google Scholar PubMed

5. Zhao, D., Wu, M., Kou, Y. and Min, E.: Ionic liquids: Applications in catalysis, Catal. Today74 (2002) 157189. 10.1016/S0920-5861(01)00541-7Suche in Google Scholar

6. Eastoe, J., Gold, S., Rogers, S. E., Paul, A., Welton, T., Heenan, R. K. and Grillo, I.: Ionic liquid-in-oil microemulsions, J. Am. Chem. Soc.127 (2005) 73027303. 10.1021/ja051155fSuche in Google Scholar PubMed

7. Hao, J. and Zemb, T.: Self-assembled structures and chemical reactions in room-temperature ionic liquids, Curr. Opin. Colloid Interface Sci.12 (2007) 129137. 10.1016/j.cocis.2006.11.004Suche in Google Scholar

8. Gao, H., Li, J., Han, B., Chen, W., Zhang, J., Zhang, R. and Yan, D.: Microemulsions with ionic liquid polar domains, Phys. Chem. Chem. Phys.6 (2004) 29142916. 10.1039/B402977ASuche in Google Scholar

9. Li, J., Zhang, J., Gao, H., Han, B. and Gao, L.: Nonaqueous microemulsion-containing ionic liquid [Bmim][PF6] as polar microenvironment, Colloid Polym. Sci.283 (2005) 13711375. 10.1007/s00396-005-1330-5Suche in Google Scholar

10. Cheng, S., Fu, X., Liu, J., Zhang, J., Zhang, Z., Wei, Y. and Han, B.: Study of ethylene glycol/TX-100/ionic liquid microemulsions, Colloids Surf.A302 (2007) 211215. 10.1016/j.colsurfa.2007.02.024Suche in Google Scholar

11. Gao, Y., Han, S., Han, B., Li, G., Shen, D., Li, Z., Du, J., Hou, W. and Zhang, G.: TX-100/water/1-butyl-3-methylimidazolium hexafluorophosphate micro-emulsions, Langmuir.21 (2005) 56815684. 10.1021/la0500880Suche in Google Scholar PubMed

12. Gao, Y., Li, N., Zheng, L., Zhao, X., Zhang, S., Han, B., Hou, W. and Li, G.: A cyclic voltammetric technique for the detection of micro-regions of bmimPF6/Tween 20/H2O microemulsions and their performance characterization by UV-vis spectroscopy, Green Chem.8 (2006) 4349. 10.1039/B510902GSuche in Google Scholar

13. Narang, A. S., Delmarre, D. and Gao, D.: Stable drug encapsulation in micelles and microemulsions, Int. J. Pharm.345 (2007) 925. 10.1016/j.ijpharm.2007.08.057Suche in Google Scholar PubMed

14. Zhang, H., Feng, F., Li, J., Zhan, X., Wei, H., Li, H., Wang, H. and Zheng, X.: Formulation of food-grade microemulsions with glycerol monolaurate: Effects of short-chain alcohols, polyols, salts and nonionic surfactants, Eur. Food Res. Technol.226 (2008) 613619. 10.1007/s00217-007-0606-zSuche in Google Scholar

15. Moniruzzaman, M., Tahara, Y., Tamura, M., Kamiya, N. and Goto, M.: Ionic liquid-assisted transdermal delivery of sparingly soluble drugs, Chem. Commun.46 (2010) 14521454. 10.1039/B907462GSuche in Google Scholar PubMed

16. Zheng, Y., Eli, W. and Li, G.: FTIR study of Tween80/1-butyl-3-methylimidazolium hexafluorophosphate/toluene microemulsions, Colloid Polym. Sci.287 (2009) 871876. 10.1007/s00396-009-2044-xSuche in Google Scholar

17. Adhikari, A., Sahu, K., Dey, S., Ghosh, S., Mandal, U. and Bhattacharyya, K.: Femtosecond solvation dynamics in a neat ionic liquid and ionic liquid microemulsion: Excitation wavelength dependence, J. Phys. Chem.B111 (2007) 1280912816. 10.1021/jp075693lSuche in Google Scholar PubMed

18. Adhikari, A., Das, D. K., Sasmal, D. K. and Bhattacharyya, K.: Ultrafast fret in a room temperature ionic liquid microemulsion: A femtosecond excitation wavelength dependence study. J. Phys. Chem. A113 (2009) 37373743. 10.1021/jp808777wSuche in Google Scholar PubMed

19. Gao, Y., Li, N., Hilfert, L., Zhang, S., Zheng, L. and Yu, L.: Temperature-induced microstructural changes in ionic liquid-based microemulsions, Langmuir.25 (2009) 13601365. 10.1021/la803452mSuche in Google Scholar PubMed

20. Gao, Y., Li, N., Zhang, S., Zheng, L., Li, X., Dong, B. and Yu, L.: Organic solvents induce the formation of oil-in-ionic liquid microemulsion aggregations, J. Phy. Chem. B113 (2009) 13891395. 10.1021/jp808522bSuche in Google Scholar PubMed

21. Atkin, R. and Warr, G. G.: Phase behavior and microstructure of microemulsions with a room-temperature ionic liquid as the polar phase. J. Phys. Chem. B111 (2007) 93099316. 10.1021/jp065020nSuche in Google Scholar PubMed

22. Zech, O., Thomaier, S., Bauduin, P., Rück, T., Touraud, D. and Kunz, W.: Microemulsions with an ionic liquid surfactant and room temperature ionic liquids as polar pseudo-phase. J. Phys. Chem. B113 (2008) 465473. 10.1021/jp8061042Suche in Google Scholar PubMed

23. Atkin, R., Bobillier, S. M. C. and Warr, G. G.: Propylammonium nitrate as a solvent for amphiphile self-assembly into micelles. lyotropic liquid crystals, and microemulsions, J. Phys. Chem. B114 (2009) 13501360. 10.1021/jp910649aSuche in Google Scholar PubMed

24. Zech, O., Thomaier, S., Kolodziejski, A., Touraud, D., Grillo, I. and Kunz, W.: Ethylammonium nitrate in high temperature stable microemulsions, J. Colloid Interface Sci.347 (2010) 227232,. 10.1016/j.jcis.2010.03.031Suche in Google Scholar PubMed

25. Zech, O., Thomaier, S., Kolodziejski, A., Touraud, D., Grillo, I. and Kunz, W.: Ionic liquids in microemulsions–a concept to extend the conventional thermal stability range of microemulsions, Chem.-Eur. J.16 (2010) 783786. 10.1002/chem.200901101Suche in Google Scholar PubMed

26. Thater, J. C., Gérard, V. and Stubenrauch, C.: Microemulsions with the ionic liquid ethylammonium nitrate: Phase behavior, composition, and microstructure, Langmuir30 (2014) 82838289. 10.1021/la501899cSuche in Google Scholar PubMed

27. Abuin, E., Lissi, E. and Olivares, K.: Tetradecyltrimethylammonium bromide water-in-oil microemulsions: Dependence of the minimum amount of alkanol required to produce a microemulsion with the alkanol and organic solvent topology, J. Colloid Interface Sci.276 (2004) 208211. 10.1016/j.jcis.2004.03.026Suche in Google Scholar PubMed

28. Das, K. P., Ceglie, A., Monduzi, M., Söderman, O. and Lindman, B.: Surfactant Self-association in Some Non-aqueous Systems. A Preliminary Report on Self-diffusion and NMR Relaxation Studies, in: Hoffmann, H. (Ed.), New Trends in Colloid Science, Steinkopff (1987) 167. 10.1007/3-798-50724-4_78Suche in Google Scholar

29. Moulik, S. P., Aylward, W. M. and Palepu, R.: Phase behaviours and conductivity study of water/cpc/alkan-1-ol (C4 and C5)/1-hexane water/oil microemulsions with reference to their structure and related thermodynamics, Can. J. Chem.79 (2001) 112. 10.1139/v00-157Suche in Google Scholar

30. Cates, M. E., Andelman, D., Safran, S. A. and Roux, D.: Theory of microemulsions: Comparison with experimental behavior, Langmuir4 (1988) 802806. 10.1021/la00082a004Suche in Google Scholar

31. Penders, M. H. G. M. and Strey, R.: Phase behavior of the quaternary system H2O/n-octane/C8E5/n-octanol: Role of the alcohol in microemulsions, J. Phys. Chem.99 (1995) 1031310318. 10.1021/j100025a037Suche in Google Scholar

32. Shinoda, K. and Lindman, B.: Organized surfactant systems: Microemulsions, Langmuir3 (1987) 135149. 10.1021/la00074a001Suche in Google Scholar

33. Digout, L., Bren, K., Palepu, R. and Moulik, S. P.: Interfacial composition, structural parameters and thermodynamic properties of water-in-oil microemulsions, Colloid Polym. Sci.279 (2001) 655663. 10.1007/s003960000468Suche in Google Scholar

34. Porada, J. H., Mansueto, M., Laschat, S. and Stubenrauch, C.: Microemulsions with novel hydrophobic ionic liquids, Soft Matter7 (2011) 6805. 10.1039/c1sm05821eSuche in Google Scholar

35. Somasundaran, P: Encyclopedia of Surface and Colloid Science, CRC Press (2006). 10.1081/E-ESCSSuche in Google Scholar

36. Cheng, S., Han, F., Wang, Y. and Yan, J.: Effect of cosurfactant on ionic liquid solubilization capacity in cyclohexane/TX-100/1-butyl-3-methylimidazolium tetrafluoroborate microemulsions. Colloids Surf. A317 (2008) 457461. 10.1016/j.colsurfa.2007.11.021Suche in Google Scholar

37. Paul, S. and Panda, A. K.: Combined phase behavior, dynamic light scattering, viscosity and spectroscopic investigations of a pyridinium-based ionic liquid-in-oil microemulsion, RSC Advances4 (2014) 3238332390. 10.1039/C4RA01209GSuche in Google Scholar

38. Paul, S. and Panda, A. K.: Physico-chemical studies on ionic liquid microemulsion: Phase manifestation, formation dynamics, size, viscosity, percolation of electrical conductance and spectroscopic investigations on 1-butyl-3-methyl imidazolium methanesulfonate+water/Tween 20+n-pentanol/n-heptane pseudoternary system, Colloids Surf. A419 (2013) 113124. 10.1016/j.colsurfa.2012.11.061Suche in Google Scholar

39. Tomšič, M., Bešter-Rogač, M., Jamnik, A., Kunz, W., Touraud, D., Bergmann, A. and Glatter, O.: Ternary systems of nonionic surfactant Brij 35, water and various simple alcohols: Structural investigations by small-angle X-ray scattering and dynamic light scattering, J. Colloid Interface Sci.294 (2006) 194211. 10.1016/j.jcis.2005.06.088Suche in Google Scholar PubMed

40. Lam, A. C., Falk, N. A. and Schechter, R. S.: The thermodynamics of micro-emulsions, J. Colloid Interface Sci.120 (1987) 3041. 10.1016/0021-9797(87)90320-1Suche in Google Scholar

41. Sahandzhieva, K., Tuma, D., Breyer, S., Pérez-Salado Kamps, Á. and Maurer, G.: Liquid–liquid equilibrium in mixtures of the ionic liquid 1-n-butyl-3-methyl-imidazolium hexafluorophosphate and an alkanol, J. Chem. Eng. Data51 (2006) 15161525. 10.1021/je050474jSuche in Google Scholar

42. Swatloski, R. P., Visser, A. E., Reichert, W. M., Broker, G. A., Farina, L. M., -Holbrey, J. D. and Rogers, R. D.: Solvation of 1-butyl-3-methylimidazolium hexafluorophosphate in aqueous ethanol-a green solution for dissolving “hydrophobic” ionic liquids, Chem. Commun. (2001) 20702071. 10.1039/B106601NSuche in Google Scholar

43. Domańska, U., Rękawek, A. and Marciniak, A.: Solubility of 1-alkyl-3-ethyl-imidazolium-based ionic liquids in water and 1-octanol, J. Chem. Eng. Data53 (2008) 11261132. 10.1021/je700693zSuche in Google Scholar

44. Lagourette, B., Peyrelasse, J., Boned, C. and Clausse, M.: Percolative conduction in microemulsion type systems, Nature281 (1979) 6062. 10.1038/281060b0Suche in Google Scholar

45. Zheng, Y. and Eli, W.: Study on the polarity of bmimPF6/Tween80/toluene microemulsion characterized by UV-visible spectroscopy, J. Dispersion Sci. and Technol.30 (2009) 698703. 10.1080/01932690802553890Suche in Google Scholar

46. Gao, Y., Wang, S., Zheng, L., Han, S., Zhang, X., Lu, D., Yu, L., Ji, Y. and Zhang, G.: Microregion detection of ionic liquid microemulsions, J. Colloid Interface Sci.301 (2006) 612616. 10.1016/j.jcis.2006.05.010Suche in Google Scholar PubMed

47. Holbrey, J. D., Visser, A. E. and Rogers, R. D.: Solubility and solvention in Ionic liquids, in: Wasserscheid, P. and Welton, T. (Eds.), Ionic Liquids in Synthesis, Wiley-VCH (2003) 68. 10.1002/3527600701.ch9Suche in Google Scholar

48. Clausse, M., Zradba, A. and Nicolas-Morgantini, L.: Water/ionic surfactant/alkanol/hydrocarbon systems. Realms-of-existence and transport properties of microemulsion type media, Colloid Polym. Sci.263 (1985) 767770. 10.1007/BF01422860Suche in Google Scholar

Received: 2015-01-12
Accepted: 2015-02-10
Published Online: 2015-09-15
Published in Print: 2015-09-15

© 2015, Carl Hanser Publisher, Munich

Heruntergeladen am 9.10.2025 von https://www.degruyterbrill.com/document/doi/10.3139/113.110386/html?lang=de
Button zum nach oben scrollen