Junction Characteristics System Based on Composite Organic Semiconductors: Polystyrene/Polyaniline Doped by [BMIM] [BF4] Ionic Liquid
-
Bekhaled Fetouhi
Abstract
A junction of emeraldine salt (ES [BF4−]) doped by [BMIM] [BF4] may be preferred over the other junctions due to its low ideality factor and maximum rectification ratio. Schottky barrier diode based on composite of polyaniline (ES [BF4−]) with polystyrene has been created and characterized using aluminium as Schottky contact and argent as an ohmic contact. The observed current–voltage characteristics can be satisfactorily fitted using the modified Schottky equation. Capacitance–voltage (C–V) in reverse bias and current–voltage (I–V) plots indicates a rectification. Various junction parameters were calculated from the temperature dependent I–V and C–V data and discussed. These results indicate that the composite materials have better mechanical strength and diode quality compared to the pure semiconducting polymer.
Kurzfassung
Ein Übergang im Emeraldinesalz (ES [BF4−]), das mit der ionischen Flüssigkeit [BMIM] [BF4] dotiert ist, könnte gegenüber anderen Übergängen aufgrund seines geringen Idealitätsfaktors und seines maximalen Gleichrichtungsverhältnisses begünstigt sein. Eine Schottky-Diode basierend auf einem Verbund aus Polyanilin (ES [BF4−]) mit Polystyren wurde hergestellt und charakterisiert, wobei Aluminium als Schottky-Kontakt und Silber als Ohmscher Kontakt verwendet wurden. Die beobachteten Strom-Spannungs-Kennlinien konnten zufriedenstellend an die modifizierte Schottky-Gleichung angepasst werden. Der Kapazitäts-Spannungs(C-V)-Plot in Sperrrichtung und der Stron-Spannungs(I-V)-Plot zeigen eine Gleichrichtung. Verschiedene Übergangsparameter wurden aus den temperaturabhängigen I-V- und C-V-Daten berechnet und diskutiert. Die Ergebnisse zeigen an, dass die Verbund-Materialien im Vergleich zum reinen leitfähigem Polymer eine bessere mechanische Festigkeit und Diodenqualität haben.
References
1. Gutmann, F., Hermann, A. M. and Rembaum, A.: Solid-State Electrochemical Cells Based on Charge Transfer Complexes. Journal of The Electrochemical Society114 (1967) 323–329. 10.1149/1.2426586Suche in Google Scholar
2. Chen, S. A., Fang, Y. and Lee, H. T.: Polyacrylic acid-doped polyaniline as p-type Semiconductor in Schottky barrier electronic device. Synthetic Metals57 (1993) 4082–4086. 10.1016/0379-6779(93)90561-ASuche in Google Scholar
3. Cacialli, F., Li, X. C., Friend, R. H., Moratti, S. C. and Holmes, A. B.: Light-emitting diodes based on poly (methacrylates) with distyrylbenzene and oxadiazole side chains. Synthetic metals75 (1995) 161–168. 10.1016/0379-6779(95)03402-6Suche in Google Scholar
4. Carter, F. L.: Atomic volume contraction in intermetallic hydride formers. A valuable new clue. Journal of the Less Common Metals74 (1980) 245–254. 10.1016/0022-5088(80)90159-9Suche in Google Scholar
5. http://homepage.Ntlworld.com/colin.pratt/applcp.Htm.Suche in Google Scholar
6. Paul, E. W., Ricco, A. J. and Wrighton, M. S.: Resistance of polyaniline films as a function of electrochemical potential and the fabrication of polyaniline-based microelectronic devices. The Journal of Physical Chemistry89 (1985) 1441–1447. 10.1021/j100254a028Suche in Google Scholar
7. Misra, S. C. K., Bhattacharya, R. and Angelucci, R.: Integrated polymer thin film macroporous silicon microsystems, in Presented at the Indo-Japanese Workshop on Microsystem Technology held at New Delhi during November (2000) 23–25.Suche in Google Scholar
8. Margolis, J. M.: Handbook of Conductive Polymers and Plastics. Chapman and Hall, London, 1989.10.1007/978-1-4613-0851-5Suche in Google Scholar
9. Singh, R., Srivastava, D. N. and Singh, R. A.: Schottky diodes based on some semiconducting polymers. Synthetic metals121 (2001) 1439–1440. 10.1016/S0379-6779(00)01439-9Suche in Google Scholar
10. Zhang, Z. and Wan, M.: Composite films of nanostructured polyaniline with poly (vinyl alcohol). Synthetic metals128 (2002) 83–89. 10.1016/S0379-6779(01)00669-5Suche in Google Scholar
11. MacFarlane, D. R., Meakin, P., Sun, J., Amini, N. and Forsyth, M.: Pyrrolidinium imides: a new family of molten salts and conductive plastic crystal phases. The Journal of Physical ChemistryB103 (1999) 4164–4170. 10.1021/jp984145sSuche in Google Scholar
12. Gordon, C. M., Holbrey, J. D., Kennedy, A. R. and Seddon, K. R.: Ionic liquid crystals: hexafluorophosphate salts. Journal of Materials Chemistry8 (1998) 2627–2636. 10.1039/a806169fSuche in Google Scholar
13. Faulkner, R. G.: Non-equilibrium grain-boundary segregation in austenitic alloys. Journal of Materials Science16 (1981) 373–383. 10.1007/BF00738626Suche in Google Scholar
14. Huang, J. F. and Sun, I. W.: Nonanomalous Electrodeposition of zinc-iron alloys in an acidic zinc chloride-1-ethyl-3-methylimidazolium chloride ionic liquid. Journal of The Electrochemical Society151 (2004) C8–C14. 10.1149/1.1628235Suche in Google Scholar
15. Mallin, M. P. and Murphy, C. J.: Solution-phase synthesis of sub-10 nm Au-Ag alloy nanoparticles. Nano Letters2 (2002) 1235–1237. 10.1021/nl025774nSuche in Google Scholar
16. Zhu, Y. J., Wang, W. W., Qi, R. J. and Hu, X. L.: Microwave-assisted synthesis of singlecrystalline tellurium nanorods and nanowires in ionic liquids. Angewandte Chemie116 (2004) 1434–1438. 10.1002/ange.200353101Suche in Google Scholar
17. Huang, S. T., Yang, K. M., Hung, J. H., Wu, J. C., Ting, H. H., Mei, W. W., Hsu, S. H and Lee, M.: Deformation front development at the northeast margin of the Tainan basin, Tainan-Kaohsiung area, Taiwan. Marine Geophysical Research25 (2004) 139–156. 10.1007/s11001-005-0739-zSuche in Google Scholar
18. Liu, H., He, P., Li, Z., Liu, Y., Li, J., Zheng, L and Li, J.: The Inherent Capacitive Behavior of Imidazolium-based Room-Temperature Ionic Liquids at Carbon Paste Electrode. Electrochemical and Solid-State Letters8 (2005) J17–J19. 10.1149/1.1922870Suche in Google Scholar
19. Mukhopadhyay, I., Aravinda, C. L., Borissov, D. and Freyland, W.: Electrodeposition of Ti from TiCl4 in the ionic liquid l-methyl-3-butyl-imidazolium bis (trifluoro methyl sulfone) imide at room temperature: study on phase formation by in situ electrochemical scanning tunneling microscopy, Electrochimica Acta50 (2005) 1275–1281. 10.1016/j.electacta.2004.07.052Suche in Google Scholar
20. Sekiguchi, K., Atobe, M. and Fuchigami, T.: Electropolymerization of pyrrole in 1-ethyl-3-methylimidazolium trifluoromethanesulfonate room temperature ionic liquid. Electrochemistry Communications4 (2002) 881–885. 10.1016/S1388-2481(02)00481-2Suche in Google Scholar
21. Randriamahazaka, H., Plesse, C., Teyssie, D. and Chevrot, C.: Relaxation kinetics of poly (3, 4-ethylenedioxythiophene) in 1-ethyl-3-methylimidazolium bis ((trifluoromethyl) sulfonyl) amide ionic liquid during potential step experiments. Electrochimica Acta50 (2005) 1515–1522. 10.1016/j.electacta.2004.10.058Suche in Google Scholar
22. Li, M. C., Ma, C. A., Liu, B. Y. and Jin, Z. M.: A novel electrolyte 1-ethylimidazolium trifluoroacetate used for electropolymerization of aniline. Electrochemistry Communications, 7 (2005) 209–212. 10.1016/j.elecom.2004.12.012Suche in Google Scholar
23. Fenelon, A. M. and Breslin, C. B.: The formation of polypyrrole at iron from 1-butyl-3-methylimidazolium hexafluorophosphate. Journal of the Electrochemical Society152 (2005) D6–D11. 10.1149/1.1831211Suche in Google Scholar
24. Naudin, E., Ho, H. A., Branchaud, S., Breau, L. and Belanger, D.: Electrochemical polymerization and characterization of poly (3-(4-fluorophenyl) thiophene) in pure ionic liquids. The Journal of Physical Chemistry B106 (2002) 10585–10593. 10.1021/jp020770sSuche in Google Scholar
25. Lee, Y. G. and Chou, T. C.: Ionic liquid ethanol sensor. Biosensors and Bioelectronics20 (2004) 33–40. 10.1016/j.bios.2004.01.026Suche in Google Scholar
26. Villagrán, C., Allen, G. D., Buzzeo, M. C., Hardacre, C. and Compton, R. G.: A mechanistic study of the electro-oxidation of bromide in acetonitrile and the room temperature ionic liquid, 1-butyl-3-methylimidazolium bis (trifluoromethylsulfonyl) imide at platinum electrodes. Journal of Electroanalytical Chemistry575 (2005) 311–320. 10.1016/j.jelechem.2004.09.023Suche in Google Scholar
27. Lei, J., Liang, W., Brumlik, C. J. and Martin, C. R.: A new interfacial polymerization method for forming metal/conductive polymer Schottky barriers. Synthetic Metals47 (1992) 351–359. 10.1016/0379-6779(92)90374-RSuche in Google Scholar
28. Willander, M., Assadi, A. and Svensson, C.: Polymer based devices their function and characterization. Synthetic Metals57 (1993) 4099–4104. 10.1016/0379-6779(93)90564-DSuche in Google Scholar
29. Gupta, R. K. and Singh, R. A.: Junction properties of Schottky diode based on composite organic semiconductors: Polyaniline-polystyrene system. Journal of Polymer Research11 (2005) 269–273. 10.1007/s10965-005-2412-2Suche in Google Scholar
30. Camaioni, N., Casalbore-Miceli, G., Beggiato, G. and Geri, A.: Optimisation of the dark and photovoltaic properties of Schottky junctions between aluminium and conjugated polymers. Synthetic Metals102 (1999) 869–870. 10.1016/S0379-6779(98)00786-3Suche in Google Scholar
31. Lun, Z. R.: Clonorchiasis, a key foodborne zoonosis in China. The Lancet infectious diseases5 (2005) 31–41. 10.1016/S1473-3099(04)01252-6Suche in Google Scholar
32. Jain, S. C.: Injection-and space charge limited-currents in doped conducting organic materials. Journal of Applied Physics89 (2001) 3804–3810. 10.1063/1.1352677Suche in Google Scholar
33. Benabdellah, A., Belarbi, H., Ilikti, H., Hatti, M. and Fettouhi, B.: Electrical Properties of PANI/Chalcogenide Junctions Doped with Ionic Liquids Anions. Tenside Surfactants Detergents49 (2012) 241–246. 10.3139/113.110188Suche in Google Scholar
34. Sun, H. J., Yu, L. P., Jin, X. B., Hu, X. H., Wang, D. H. and Chen, G. Z.: Electro-reduction of cuprous chloride powder to copper nanoparticles in an ionic liquid. Electrochemistry Communications9 (2007) 1374–1381. 10.1016/j.elecom.2007.01.050Suche in Google Scholar
35. Villagran, C., Banks, C. E., Hardacre, C. and Compton, R. G.: Electroanalytical determination of trace chloride in room-temperature ionic liquids. Analytical chemistry76 (2004) 1998–2003. 10.1021/ac030375dSuche in Google Scholar
36. Huddleston, J. G., Visser, A. E., Reichert, W. M., Willauer, H. D., BrokerG. A and Rogers, R. D.: Characterization and comparison of hydrophilic and hydrophobic room temperature ionic liquids incorporating the imidazolium cation. Green Chem.3 (2001) 156–164. 10.1039/b103275pSuche in Google Scholar
37. Ashwell, G. J.: Photochromic and non-linear optical properties of C16H33P3CNQ and C16H33Q3CNQ Langmuir-Blodgett films. Thin Solid Films186 (1990) 155–165. 10.1016/0040-6090(90)90509-CSuche in Google Scholar
38. Saxena, V. and Santhanam, K. S. V.: Junction properties of Schottky diode with chemically prepared copolymer having hexylthiophene and cyclohexylthiophene units. Current Applied Physics3 (2003) 227–233. 10.1016/S1567-1739(02)00220-1Suche in Google Scholar
39. Samanta, A.: Electron Donor-Acceptor Molecules. Photophysics and Applications. Proceeding-Indian National Science Academy part A69 (2003) 95–108.Suche in Google Scholar
40. Singh, R. and Narula, A. K.: Junction properties of aluminum/polypyrrole (polypyrrole derivatives) Schottky diodes. Applied physics letters71 (1997) 2845–2847. 10.1063/1.120151Suche in Google Scholar
41. Tomozawa, H., Braun, D., Phillips, S., Heeger, A. J. and Kroemer, H.: Metal-polymer Schottky barriers on cast films of soluble poly (3-alkylthiophenes). Synthetic Metals22 (1987) 63–69. 10.1016/0379-6779(87)90571-6Suche in Google Scholar
42. Ashwell, G. J., Tyrrell, W. D. and Whittam, A.J.: Molecular rectification: Self-assembled monolayers in which donor-(π-bridge)-acceptor moieties are centrally located and symmetrically coupled to both gold electrodes. Journal of the American Chemical Society126 (2004) 7102–7110. 10.1021/ja049633uSuche in Google Scholar PubMed
© 2014, Carl Hanser Publisher, Munich
Artikel in diesem Heft
- Contents/Inhalt
- Contents
- Application
- Rapid Assessment of Glass Etching/Corrosion using the Quartz Crystal Microbalance with Dissipation Monitoring, QCM-D
- Micelle Based Spectrofluorimetric Determination of Chloroquine Phosphate in Commercial Formulation and Human Plasma
- Novel Surfactants
- Synthesis of Rice Bran Fatty Acids (RBFAs) Based Cationic Surfactants and Evaluation of Their Performance Properties in Combination with Nonionic Surfactant
- Synthesis and Properties of Guerbet Hexadecyl Sulfate
- Synthesis and Characterization of N-alkyl-N′-glucosylhexanediamine Surfactant
- Mizellar Catalysis
- Methanesulfonic Acid as a More Efficient Catalyst for the Synthesis of Lauraldehyde Glycerol Acetal
- Surfactant Assisted Enhancement of Bioremediation Rate for Hexavalent Chromium by Water Extract of Siris (Albizia lebbeck) Sawdust
- Physical Chemistry
- Synergistic Interactions in Mixed W/O Microemulsions of Cationic Gemini and Anionic Surfactants
- Percolative Behavior Models Based on Artificial Neural Networks for Electrical Percolation of AOT Microemulsions in the Presence of Crown Ethers as Additives
- Junction Characteristics System Based on Composite Organic Semiconductors: Polystyrene/Polyaniline Doped by [BMIM] [BF4] Ionic Liquid
Artikel in diesem Heft
- Contents/Inhalt
- Contents
- Application
- Rapid Assessment of Glass Etching/Corrosion using the Quartz Crystal Microbalance with Dissipation Monitoring, QCM-D
- Micelle Based Spectrofluorimetric Determination of Chloroquine Phosphate in Commercial Formulation and Human Plasma
- Novel Surfactants
- Synthesis of Rice Bran Fatty Acids (RBFAs) Based Cationic Surfactants and Evaluation of Their Performance Properties in Combination with Nonionic Surfactant
- Synthesis and Properties of Guerbet Hexadecyl Sulfate
- Synthesis and Characterization of N-alkyl-N′-glucosylhexanediamine Surfactant
- Mizellar Catalysis
- Methanesulfonic Acid as a More Efficient Catalyst for the Synthesis of Lauraldehyde Glycerol Acetal
- Surfactant Assisted Enhancement of Bioremediation Rate for Hexavalent Chromium by Water Extract of Siris (Albizia lebbeck) Sawdust
- Physical Chemistry
- Synergistic Interactions in Mixed W/O Microemulsions of Cationic Gemini and Anionic Surfactants
- Percolative Behavior Models Based on Artificial Neural Networks for Electrical Percolation of AOT Microemulsions in the Presence of Crown Ethers as Additives
- Junction Characteristics System Based on Composite Organic Semiconductors: Polystyrene/Polyaniline Doped by [BMIM] [BF4] Ionic Liquid