Methanesulfonic Acid as a More Efficient Catalyst for the Synthesis of Lauraldehyde Glycerol Acetal
-
Tong Zhang
Abstract
The purpose of this paper is to describe a more efficient catalyst for the synthesis of lauraldehyde glycerol acetal. Catalytic effect of methane sulfonic acid and p-toluenesulfonic acid were compared. With a mixture of 0.67 wt.% methanesulfonic acid in relation to lauraldehyde, equimolar amounts of glycerol and lauraldehyde being stirred at 110 °C for 2.5 h, the yield of the product was 76.32 %. When p-toluenesulfonic acid was used, the amount of the catalyst was 0.91 wt.% and the yield of the product was 62.91 % after reacting for 2.5 h at 120 °C. The result reveals that methane sulfonic acid is more efficient. Surface tension measurements showed that critical micelle concentration of the product catalyzed by methanesulfonic acid was 5.33 × 10−5 mol · L−1, and at this point the surface tension could achieve about 24 mN m−1.
Kurzfassung
Ziel dieser Arbeit war, für die Synthese von Laurinaldehydglycerinacetal einen effizienteren Katalysator zu finden. Der katalytische Effekt von Methansulfonsäure und p-Toulensäure wurde verglichen. Equimolare Mengen an Glycerin und Laurinaldehyd wurden zusammen mit 0,67 Gewichtsprozent Methansulfonsäure (in Relation zu Laurinaldehyd) bei 110 °C 2,5 Stunden gerührt. Die Produktausbeute betrug 76,32 %. Wenn p-Toulensäure bei einer Katalysatormenge von 0,91 Gewichtsprozent verwendet wurde, dann betrug die Produktausbeute 62,91 % nach einer Reaktionszeit von 2,5 Stunden bei 120 °C. Das Ergebnis zeigt, dass Methansulfonsäure der effizientere Katalysator ist. Messungen der Oberflächenspannungen ergaben, dass die kritische Mizellenbildungskonzentration (CMC) des mit Methansulfonsäure katalysierten Produkts 5.33 × 10−5 mol · L−1 ist. Die Oberflächenspannung an der CMC lag bei 24 mN m−1.
References
1. Behr, A., Eilting, J., Irawadi, K. and Lindner, F.: Improved utilization of renewable resources: new important derivatives of glycerol, Green Chem.10 (2007) 13–30. 10.1039/b710561dSuche in Google Scholar
2. Pagliaro, M. and M.Rossi: The Future of Glycerol: New Uses of a Versatile Raw Material, in: Clark, J. H., and Kraus, G. A. (Ed.), RSC Green Chemistry Book Series, RSC Publishing, Cambridge (2008). 10.1039/9781847558305Suche in Google Scholar
3. D'Hondt, E., Van de Vyver, S., Sels, B. F. and Jacobs, P. A.: Catalytic glycerol conversion into 1,2-propanediol in absence of added hydrogen, Chem. Commun. (2008) 6011–6012. 10.1039/b812886cSuche in Google Scholar PubMed
4. Jérôme, F., Pouilloux, Y. and Barrault, J.: Rational design of solid catalysts for the selective use of glycerol as a natural organic building block, ChemSusChem.1 (2008) 586–613. 10.1002/cssc.200800069Suche in Google Scholar PubMed
5. Zhu, X. L., Hoang, T., Lobban, L. L. and Mallinson, R. G.: Plasma reforming of glycerol for synthesis gas production, Chem. Commun. (2009) 2908–2010. 10.1039/B823410HSuche in Google Scholar PubMed
6. Ghosh, S. K., Saha, R., Ghosh, A., Mukherjee, K. and Saha, B.: Micellar catalysis on 1, 10-phenanthroline promoted chromic acid oxidation of glycerol in aqueous media, Tenside Surf. Det.49 (2012) 370–375. 10.3139/113.110204Suche in Google Scholar
7. Ghosh, S. K., Basu, A., Saha, R., Ghosh, A., Mukherjee, K. and Saha, B.: Micellar catalysis on picolinic acid promoted hexavalent chromium oxidation of glycerol, J. Coord. Chem.65 (2012) 1158–1177. 10.1080/00958972.2012.669035Suche in Google Scholar
8. Basu, A., Ghosh, S. K., Saha, R., Nandi, R., Ghosh, T. and Saha, B.: Effect of some non functional surfactants and electrolytes on the hexavalent chromium reduction by glycerol: a mechanistic study, Tenside Surf. Det.48 (2011) 453–458. 10.3139/113.110152Suche in Google Scholar
9. Zhou, C. H., Beltramini, J. N., Fan, Y. X. and Lu, G. Q.: Chemoselective catalytic conversion of glycerol as a biorenewable source to valuable commodity chemicals, Chem. Soc. Rev.37 (2008) 527–549. 10.1039/B707343GSuche in Google Scholar PubMed
10. Zheng, Y. G., Chen, X. L. and Shen, Y. C.: Commodity chemicals derived from glycerol, an important biorefinery feedstock, Chem. Rev.108 (2008) 5253–5277. 10.1021/cr068216sSuche in Google Scholar PubMed
11. McDougall, P. J.: Lubricating composition containing 1,3-dioxolane-4-methanol compounds as antiwear additives (2012) USP 0129744.Suche in Google Scholar
12. Yoshiyuki, H.: New decomposition type reactive emulsifier and method for polymer by using the same (2001) JP 2001261719A.Suche in Google Scholar
13. Mallet, C., Russel, R. J. and Yardley, K.: Destructible surfactants and use in small molecule analysis (2003) WO 2003102536.Suche in Google Scholar
14. Lee, P. J. J. and Compton, B. J.: Destructible surfactants and use thereof (2000) WO 2000070334.Suche in Google Scholar
15. Piasecki, A. and Mayhew, A.: Synthesis and surface properties of chemodegradable anionic surfactants: diastereomeric (2-n-alkyl-1,3-dioxan-5-yl) sulfates with monovalent Counter-Ions, JSD.3 (2000) 59–65. 10.1007/s11743-000-0114-3Suche in Google Scholar
16. Piasecki, A., Burczyk, B., Sokolowski, A. and Kotlewska, U.: An efficient method for the preparation of pure longchain cis- and trans-2-n-alkyl-5-hydroxy-1,3-dioxanes, Synth. Commun.26 (1996) 4145–4151. 10.1080/00397919608004651Suche in Google Scholar
17. Ingo, F. S., Sandra, H., Peter, K., Ulrich, S., Eckhard, P. and Udo, K.: Alkoxylated glycerol acetals for use as low foaming surfactants in agrochemical compositions, lacquers and coatings (2011) WO 2011038857.Suche in Google Scholar
© 2014, Carl Hanser Publisher, Munich
Artikel in diesem Heft
- Contents/Inhalt
- Contents
- Application
- Rapid Assessment of Glass Etching/Corrosion using the Quartz Crystal Microbalance with Dissipation Monitoring, QCM-D
- Micelle Based Spectrofluorimetric Determination of Chloroquine Phosphate in Commercial Formulation and Human Plasma
- Novel Surfactants
- Synthesis of Rice Bran Fatty Acids (RBFAs) Based Cationic Surfactants and Evaluation of Their Performance Properties in Combination with Nonionic Surfactant
- Synthesis and Properties of Guerbet Hexadecyl Sulfate
- Synthesis and Characterization of N-alkyl-N′-glucosylhexanediamine Surfactant
- Mizellar Catalysis
- Methanesulfonic Acid as a More Efficient Catalyst for the Synthesis of Lauraldehyde Glycerol Acetal
- Surfactant Assisted Enhancement of Bioremediation Rate for Hexavalent Chromium by Water Extract of Siris (Albizia lebbeck) Sawdust
- Physical Chemistry
- Synergistic Interactions in Mixed W/O Microemulsions of Cationic Gemini and Anionic Surfactants
- Percolative Behavior Models Based on Artificial Neural Networks for Electrical Percolation of AOT Microemulsions in the Presence of Crown Ethers as Additives
- Junction Characteristics System Based on Composite Organic Semiconductors: Polystyrene/Polyaniline Doped by [BMIM] [BF4] Ionic Liquid
Artikel in diesem Heft
- Contents/Inhalt
- Contents
- Application
- Rapid Assessment of Glass Etching/Corrosion using the Quartz Crystal Microbalance with Dissipation Monitoring, QCM-D
- Micelle Based Spectrofluorimetric Determination of Chloroquine Phosphate in Commercial Formulation and Human Plasma
- Novel Surfactants
- Synthesis of Rice Bran Fatty Acids (RBFAs) Based Cationic Surfactants and Evaluation of Their Performance Properties in Combination with Nonionic Surfactant
- Synthesis and Properties of Guerbet Hexadecyl Sulfate
- Synthesis and Characterization of N-alkyl-N′-glucosylhexanediamine Surfactant
- Mizellar Catalysis
- Methanesulfonic Acid as a More Efficient Catalyst for the Synthesis of Lauraldehyde Glycerol Acetal
- Surfactant Assisted Enhancement of Bioremediation Rate for Hexavalent Chromium by Water Extract of Siris (Albizia lebbeck) Sawdust
- Physical Chemistry
- Synergistic Interactions in Mixed W/O Microemulsions of Cationic Gemini and Anionic Surfactants
- Percolative Behavior Models Based on Artificial Neural Networks for Electrical Percolation of AOT Microemulsions in the Presence of Crown Ethers as Additives
- Junction Characteristics System Based on Composite Organic Semiconductors: Polystyrene/Polyaniline Doped by [BMIM] [BF4] Ionic Liquid