Startseite Micellization and Interfacial Behaviour of Amitriptyline-Nonionic Surfactant Systems in Aqueous Medium
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Micellization and Interfacial Behaviour of Amitriptyline-Nonionic Surfactant Systems in Aqueous Medium

  • Kabir-ud-Din , A. Z. Naqvi und A. B. Khan
Veröffentlicht/Copyright: 5. April 2013
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

By means of surface tension measurement (ring detachment method) mixed micellization and mixed adsorbed film formation were studied between an amphiphilic drug (amitriptyline hydrochloride – AMT) and nonionic surfactants (Tritons and Tweens) at different mole fractions. From the equilibrium surface tension measurements critical micelle concentration (CMC), maximum surface excess (Γmax) and minimum area per surfactant molecule at the air/solution interface (Amin) were obtained. The theories of Rosen, Rubingh and Maeda were applied to analyse the results. Different thermodynamic parameters, viz. free energy of micellization (ΔGom), standard Gibbs energy of adsorption (ΔGoads), and minimum energy of surface (Gmin) were evaluated. In the mixed micelles, presence of nonionic surfactants between the head groups of drug molecules decreases the repulsion among head groups. As a result, the CMC and Amin decrease while Γmax increases. Interaction parameters of micelles (βm) and monolayer (βs) indicate that the drug surfactant systems show better interaction at the interface than in micelles.

Kurzfassung

Die Bildung von Mischmizellen und adsorbierten Mischfilmen aus einem amphiphilen Wirkstoff (Amitriptylinhydrochlorid – AMT) und nichtionischen Tensiden (Tritons und Tweens) wurden bei verschiedenen Molfraktionen mittels Oberflächenspannungsmessungen (Ring-Methode) untersucht. Aus den gemessenen Gleichgewichtsoberflächenspannungen wurden die kritische Mizellenkonzentration (CMC), die maximale Oberflächenüberschusskonzentration (Γmax) und der minimale Platzbedarf eines Tensidmoleküls (Amin) an der Luft/Flüssig-Grenzfläche erhalten. Zur Analyse der Ergebnisse wurden die Theorien von Rosen, Rubingh und Meada eingesetzt. Verschiedene thermodynamische Parameter wie die freie Mizellenbildungssenergie (ΔGom), die Standard Gibbs-Energie der Adsorption (ΔGoads), und die minimale Oberflächenenergie (Gmin) wurden ermittelt. Wenn sich in den Mischmizellen zwischen den Kopfgruppen der Wirkstoffmoleküle nichtionische Tenside befinden, nimmt die Wechselwirkung unter den Kopfgruppen in den Mischmizellen ab. Daraus resultiert, dass die CMC und das Amin abnimmt während Γmax zunimmt. Die Wechselwirkungsparameter der Mizellen (βm) und der Monolayer (βs) zeigen an, dass die Systeme Wirkstoff – Tensid eine stärkere Wechselwirkung an der Grenzfläche als in den Mizellen aufweisen.


Prof. Kabir-ud-Din, Dept. of Chemistry, Aligarh Muslim University, Aligarh-202002, India, Tel.: 0571-2703515. E-Mail:

Prof. Kabir-ud-Din is Professor of physical chemistry at Aligarh Muslim University. He received his M.Sc. and Ph.D. degrees from the same university. He held Post Doc positions at Prague (Czech Republic), Keele (UK) and Austin (USA). The research line followed at present are: micellar kinetics, electrochemistry, physicochemical behaviour of micellar solutions, the clouding phenomenon in amphiphilic systems, etc. He has authored about 250 research papers.

Dr. A. Z. Naqvi received her M.Sc. and Ph.D. degrees from the Aligarh Muslim University. Her research interest is the solution behaviour of amphiphiles.

Abbul Bashar Khan is currently a Ph.D. student at Department of Chemistry, Aligarh Muslim University, Aligarh, India. He received his M.Sc. degree from the same university.


References

1. Jones, M. and Leurox, J.: Eur. J. Pharma. Biopharm.48 (1999) 101. 10.1016/S0939-6411(99)00039-9Suche in Google Scholar

2. Torchilin, V. P.: J. Controlled Release73 (2001) 137. 10.1016/S0168-3659(01)00299-1Suche in Google Scholar

3. Kwon, G. S. and Okano, T.: Adv. Drug Delivery Rev.21 (1996) 107. 10.1016/S0169-409X(96)00401-2Suche in Google Scholar

4. Mukherjee, P. and Mysels, K. J.: Critical Micelle Concentrations of Aqueous Surfactants: NSRDS-NBS 36, Superintendent of Documents, Washigton, D.C., (1971).Suche in Google Scholar

5. Attwood, D. and Florence, A. T.: Surfactant Systems, Chapman and Hall, London, (1983). 10.1007/978-94-009-5775-6Suche in Google Scholar

6. Os, N. M. van, Haak, J. R. and Rupert, L. A. M.: Physico-Chemical Properties of Selected Anionic, Cationic and Nonionic Surfactants, Elsevier, Amsterdam, (1993).Suche in Google Scholar

7. Schreier, S., Malheiros, S. V. P. and Paula, E. de: Biochim. Biophys. Acta1508 (2000) 210. 10.1016/S0304-4157(00)00012-5Suche in Google Scholar

8. Rosen, M. J.: Surfactants and Interfacial Phenomena, 3rd ed., Wiley-Interscience: New York (2004). 10.1002/0471670561Suche in Google Scholar

9. Holland, P. M. and Rubingh, D. N.: J. Phys. Chem.87 (1983) 1984. 10.1021/j100234a030Suche in Google Scholar

10. Meada, H.: J. Colloid Interface Sci.172 (1995) 98. 10.1006/jcis.1995.1230Suche in Google Scholar

11. Bakshi, M. S., Singh, J. and Kaur, G.: J. Colloid Interface Sci.285 (2005) 403. 10.1016/j.jcis.2004.11.013Suche in Google Scholar PubMed

12. Kawamura, H., Manabe, M., Saio, H., Takahashi, H. and Takunaga, S.: Niihama Kogyo Koto Senmon Gakka Kiyo Rikogakuhen25 (1989) 86.Suche in Google Scholar

13. Jana, P. K. and Moulik, S. P.: J. Phys. Chem.95 (1991) 9525. 10.1021/j100176a089Suche in Google Scholar

14. Prasad, M., Moulik, S. P. and Palepu, R.: J. Colloid Interface Sci.284 (2005) 658. 10.1016/j.jcis.2004.10.063Suche in Google Scholar

15. Alam, M. S., Naqvi, A. Z. and Kabir-ud-Din: J. Chem. Eng. Data52 (2007) 1326. 10.1021/je700045rSuche in Google Scholar

16. Rosen, M. J.: Langmuir7 (1991) 885. 10.1021/la00053a012Suche in Google Scholar

17. Mukherjee, P.: Adv. Colloid Interface Sci.1 (1967) 241.Suche in Google Scholar

18. Sugihara, G., Miyazono, A. M., Nagadome, S., Oida, T., Hayashi, Y. and Ko, J. S.: J. Oleo Sci.52 (2001) 449. 10.5650/jos.52.449Suche in Google Scholar

19. Yeom, I. T., Ghosh, M. M., Cox, C. D. and Robinson, K. G.: Environ. Sci. Technol.29 (1995) 3015. 10.1021/es00012a019Suche in Google Scholar

20. Traguer, D. and Csordas, A.: Biochem. J.244 (1987) 605.Suche in Google Scholar

21. Acharya, K. R., Bhattacharyya, S. C. and Moulik, S. P.: J. Photochem. Photobiol. A: Chemistry122 (1999) 47. 10.1016/S1010-6030(99)00003-9Suche in Google Scholar

Received: 2010-01-23
Published Online: 2013-04-05
Published in Print: 2010-09-01

© 2010, Carl Hanser Publisher, Munich

Heruntergeladen am 16.11.2025 von https://www.degruyterbrill.com/document/doi/10.3139/113.110084/pdf
Button zum nach oben scrollen