Micellization and Interfacial Behaviour of Amitriptyline-Nonionic Surfactant Systems in Aqueous Medium
-
Kabir-ud-Din
, A. Z. Naqvi und A. B. Khan
Abstract
By means of surface tension measurement (ring detachment method) mixed micellization and mixed adsorbed film formation were studied between an amphiphilic drug (amitriptyline hydrochloride – AMT) and nonionic surfactants (Tritons and Tweens) at different mole fractions. From the equilibrium surface tension measurements critical micelle concentration (CMC), maximum surface excess (Γmax) and minimum area per surfactant molecule at the air/solution interface (Amin) were obtained. The theories of Rosen, Rubingh and Maeda were applied to analyse the results. Different thermodynamic parameters, viz. free energy of micellization (ΔGom), standard Gibbs energy of adsorption (ΔGoads), and minimum energy of surface (Gmin) were evaluated. In the mixed micelles, presence of nonionic surfactants between the head groups of drug molecules decreases the repulsion among head groups. As a result, the CMC and Amin decrease while Γmax increases. Interaction parameters of micelles (βm) and monolayer (βs) indicate that the drug surfactant systems show better interaction at the interface than in micelles.
Kurzfassung
Die Bildung von Mischmizellen und adsorbierten Mischfilmen aus einem amphiphilen Wirkstoff (Amitriptylinhydrochlorid – AMT) und nichtionischen Tensiden (Tritons und Tweens) wurden bei verschiedenen Molfraktionen mittels Oberflächenspannungsmessungen (Ring-Methode) untersucht. Aus den gemessenen Gleichgewichtsoberflächenspannungen wurden die kritische Mizellenkonzentration (CMC), die maximale Oberflächenüberschusskonzentration (Γmax) und der minimale Platzbedarf eines Tensidmoleküls (Amin) an der Luft/Flüssig-Grenzfläche erhalten. Zur Analyse der Ergebnisse wurden die Theorien von Rosen, Rubingh und Meada eingesetzt. Verschiedene thermodynamische Parameter wie die freie Mizellenbildungssenergie (ΔGom), die Standard Gibbs-Energie der Adsorption (ΔGoads), und die minimale Oberflächenenergie (Gmin) wurden ermittelt. Wenn sich in den Mischmizellen zwischen den Kopfgruppen der Wirkstoffmoleküle nichtionische Tenside befinden, nimmt die Wechselwirkung unter den Kopfgruppen in den Mischmizellen ab. Daraus resultiert, dass die CMC und das Amin abnimmt während Γmax zunimmt. Die Wechselwirkungsparameter der Mizellen (βm) und der Monolayer (βs) zeigen an, dass die Systeme Wirkstoff – Tensid eine stärkere Wechselwirkung an der Grenzfläche als in den Mizellen aufweisen.
References
1. Jones, M. and Leurox, J.: Eur. J. Pharma. Biopharm.48 (1999) 101. 10.1016/S0939-6411(99)00039-9Suche in Google Scholar
2. Torchilin, V. P.: J. Controlled Release73 (2001) 137. 10.1016/S0168-3659(01)00299-1Suche in Google Scholar
3. Kwon, G. S. and Okano, T.: Adv. Drug Delivery Rev.21 (1996) 107. 10.1016/S0169-409X(96)00401-2Suche in Google Scholar
4. Mukherjee, P. and Mysels, K. J.: Critical Micelle Concentrations of Aqueous Surfactants: NSRDS-NBS 36, Superintendent of Documents, Washigton, D.C., (1971).Suche in Google Scholar
5. Attwood, D. and Florence, A. T.: Surfactant Systems, Chapman and Hall, London, (1983). 10.1007/978-94-009-5775-6Suche in Google Scholar
6. Os, N. M. van, Haak, J. R. and Rupert, L. A. M.: Physico-Chemical Properties of Selected Anionic, Cationic and Nonionic Surfactants, Elsevier, Amsterdam, (1993).Suche in Google Scholar
7. Schreier, S., Malheiros, S. V. P. and Paula, E. de: Biochim. Biophys. Acta1508 (2000) 210. 10.1016/S0304-4157(00)00012-5Suche in Google Scholar
8. Rosen, M. J.: Surfactants and Interfacial Phenomena, 3rd ed., Wiley-Interscience: New York (2004). 10.1002/0471670561Suche in Google Scholar
9. Holland, P. M. and Rubingh, D. N.: J. Phys. Chem.87 (1983) 1984. 10.1021/j100234a030Suche in Google Scholar
10. Meada, H.: J. Colloid Interface Sci.172 (1995) 98. 10.1006/jcis.1995.1230Suche in Google Scholar
11. Bakshi, M. S., Singh, J. and Kaur, G.: J. Colloid Interface Sci.285 (2005) 403. 10.1016/j.jcis.2004.11.013Suche in Google Scholar PubMed
12. Kawamura, H., Manabe, M., Saio, H., Takahashi, H. and Takunaga, S.: Niihama Kogyo Koto Senmon Gakka Kiyo Rikogakuhen25 (1989) 86.Suche in Google Scholar
13. Jana, P. K. and Moulik, S. P.: J. Phys. Chem.95 (1991) 9525. 10.1021/j100176a089Suche in Google Scholar
14. Prasad, M., Moulik, S. P. and Palepu, R.: J. Colloid Interface Sci.284 (2005) 658. 10.1016/j.jcis.2004.10.063Suche in Google Scholar
15. Alam, M. S., Naqvi, A. Z. and Kabir-ud-Din: J. Chem. Eng. Data52 (2007) 1326. 10.1021/je700045rSuche in Google Scholar
16. Rosen, M. J.: Langmuir7 (1991) 885. 10.1021/la00053a012Suche in Google Scholar
17. Mukherjee, P.: Adv. Colloid Interface Sci.1 (1967) 241.Suche in Google Scholar
18. Sugihara, G., Miyazono, A. M., Nagadome, S., Oida, T., Hayashi, Y. and Ko, J. S.: J. Oleo Sci.52 (2001) 449. 10.5650/jos.52.449Suche in Google Scholar
19. Yeom, I. T., Ghosh, M. M., Cox, C. D. and Robinson, K. G.: Environ. Sci. Technol.29 (1995) 3015. 10.1021/es00012a019Suche in Google Scholar
20. Traguer, D. and Csordas, A.: Biochem. J.244 (1987) 605.Suche in Google Scholar
21. Acharya, K. R., Bhattacharyya, S. C. and Moulik, S. P.: J. Photochem. Photobiol. A: Chemistry122 (1999) 47. 10.1016/S1010-6030(99)00003-9Suche in Google Scholar
© 2010, Carl Hanser Publisher, Munich
Artikel in diesem Heft
- Contents/Inhalt
- Contents
- Abstracts
- Abstracts
- Environmental/Technical Chemistry
- Alkyl Polyglycoside-Sorbitan Ester Formulations for Improved Oil Recovery
- Novel Surfactants
- Photosynthesis-inhibiting Effects of Cationic Biodegradable Gemini Surfactants
- Synthesis and Characterization of a New Cationic Galactolipid with Carbamate for Gene Delivery
- Physical Chemistry
- Dynamics of Formation of Vesicles Studied by Highly Time-resolved Stopped-flow Experiments
- Ion Extractant as Cosurfactant at the Water-Oil Interface in Microemulsions
- Microemulsions with Mixed Nonionic Surfactants and Isopropylmyristate
- Micellization and Interfacial Behaviour of Amitriptyline-Nonionic Surfactant Systems in Aqueous Medium
- Synthesis
- Ordered Ferrocene-containing Mesoporous Materials with Tailor-made Pore Size
- Cleaning Technology
- Comparison of Standards for Testing Electrical Dishwashers or Dishwashing Detergents
- Manual Dishwashing – How can it be Optimized?
Artikel in diesem Heft
- Contents/Inhalt
- Contents
- Abstracts
- Abstracts
- Environmental/Technical Chemistry
- Alkyl Polyglycoside-Sorbitan Ester Formulations for Improved Oil Recovery
- Novel Surfactants
- Photosynthesis-inhibiting Effects of Cationic Biodegradable Gemini Surfactants
- Synthesis and Characterization of a New Cationic Galactolipid with Carbamate for Gene Delivery
- Physical Chemistry
- Dynamics of Formation of Vesicles Studied by Highly Time-resolved Stopped-flow Experiments
- Ion Extractant as Cosurfactant at the Water-Oil Interface in Microemulsions
- Microemulsions with Mixed Nonionic Surfactants and Isopropylmyristate
- Micellization and Interfacial Behaviour of Amitriptyline-Nonionic Surfactant Systems in Aqueous Medium
- Synthesis
- Ordered Ferrocene-containing Mesoporous Materials with Tailor-made Pore Size
- Cleaning Technology
- Comparison of Standards for Testing Electrical Dishwashers or Dishwashing Detergents
- Manual Dishwashing – How can it be Optimized?