Startseite Microemulsions with Mixed Nonionic Surfactants and Isopropylmyristate
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Microemulsions with Mixed Nonionic Surfactants and Isopropylmyristate

  • M. Fanun
Veröffentlicht/Copyright: 5. April 2013
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Water/propylene glycol/sucrose laurate/ethoxylated mono-di-glyceride/isopropylmyristate microemulsion systems were formulated and investigated using electrical conductivity and small angle X-ray scattering. The solubilization capacity of water in oil is dependent on the surfactants mixing ratio (w/w). The free energy of solubilization (ΔGos) values for water-in-oil microemulsions were calculated and found to decrease with water content in the water-in-oil microemulsions, they decreased with increasing ethoxylated mono-di-glyceride content in the mixed surfactants. The activation energy of conductive flow was estimated and a percolation phenomenon was revealed in these systems. Small angle X-ray scattering results indicate that the periodicity increases linearly with the increase in the water volume fraction in these microemulsions. The correlation length increases with the increase in the water volume fraction to a certain value then decreases.

Kurzfassung

Mikroemulsionen aus Wasser, Propylenglykol, Sucroselaurat, ethoxilierte Mono-diglyceride und Isopropylmyristat wurden hergestellt. An diesen Systemen wurden Messungen der elektrischen Leitfähigkeit und der Kleinwinkelröntgenstreuung durchgeführt. Das Lösevermögen von Wasser in Öl ist abhängig vom Tensidmischungsverhältnis (w/w). Die freie Löseenergie (ΔGos) der Wasser-in-Öl-Mikroemulsionen wurde berechnet. Die Ergebnisse zeigen, dass die ΔGos-Werte mit dem Wassergehalt in den Wasser-in-Öl-Mikroemulsionen und ebenfalls mit steigendem Gehalt an ethoxylierten Mono-diglyceriden in der Tensidmischung abnehmen. Die Aktivierungsenergie für den Ladungsfluss wurde abgeschätzt und ein Perkolationsphänomen in dem System entdeckt. Die Messergebnisse der Kleinwinkelröntgenstreuung zeigen, dass die Periodizität linear mit dem Volumenbruch des Wassers in der Mikroemulsion ansteigt. Auch die Korrelationslänge steigt zunächst mit dem Volumenbruch des Wassers bis zu einem bestimmten Wert an, nimmt dann aber ab.


Dr. Monzer Fanun, Colloids and Surfaces Research Laboratory, Faculty of Science and Technology, Al-Quds University, East-Jerusalem, Palestine, Tel.: +97022799753, Fax: +97022796960. E-Mail: ,

Dr. Monzer Fanun was born in November 1966, he is a professor and head of the colloids and surfaces research laboratory at Al-Quds University, East Jerusalem, Palestine. In 2003, he received his PhD in applied chemistry from the Casali Institute of Applied Chemistry a part of the Institute of Chemistry at the Hebrew University of Jerusalem, Israel. His research focuses on colloidal systems for health care products, surfactant-based alternatives to organic solvents.


References

1. Fanun, M. (ed.): Microemulsions: Properties and Applications, Taylor and Francis/CRC Press, Boca Raton, 2009.Suche in Google Scholar

2. Kunieda, H. and Solans, C. (eds.): Industrial Applications of Microemulsions; Marcel Dekker, Inc.,: New York, 1996.Suche in Google Scholar

3. Ogino, K. and Abe, M. (eds.): Mixed Surfactant Systems, Surfactant Science Series 46, Marcel Dekker, Inc. New York, 1992.Suche in Google Scholar

4. Scamehorn, J. F.: Phenomena in Mixed Surfactants Systems (Scamehorn, J. F., Ed.) ACS Symposium Series 311, American Chemical Society, Washington, D.C., 1986. 10.1021/symposiumSuche in Google Scholar

5. Walderhaug, H. and Knudsen, K. D.: Langmuir24 (2008) 10637. 10.1021/la800344hSuche in Google Scholar PubMed

6. Santos, P., Watkinson, A. C., Hadgraft, J. and Lane, M. E.: Skin Pharmacology and Physiology21 (2008) 246. 10.1159/000140228Suche in Google Scholar PubMed

7. Fanun, M.: Journal of Molecular Liquids139 (2008) 14. 10.1016/j.molliq.2007.10.005Suche in Google Scholar

8. Zhang, H., Feng, F., Li, J., Zhan, X., Wei, H., Li, H., Wang, H. and Zheng, X.: European Food Research and Technology226 (2008) 613. 10.1007/s00217-007-0606-zSuche in Google Scholar

9. Yaghmur, A., De Campo, L., Aserin, A., Garti, N. and Glatter, O.: Physical Chemistry Chemical Physics.6 (2004) 1524. 10.1039/b314625cSuche in Google Scholar

10. Kunieda, H., Ushio, N., Nakano, A. and Miura, M.: J. Colloid Interface Sci.159 (1993) 37. 10.1006/jcis.1993.1294Suche in Google Scholar

11. Kunieda, H. and Yamagata, M.: Langmuir9 (1993) 3345. 10.1021/la00036a005Suche in Google Scholar

12. Kunieda, H., Nakano, A. and Akimura, M.: J. Colloid Interface Sci.170 (1995) 78. 10.1006/jcis.1995.1074Suche in Google Scholar

13. Kunieda, H., Nakano, A. and Pes, Ma. A.: Langmuir11 (1995) 3302. 10.1021/la00009a006Suche in Google Scholar

14. Kunieda, H., Horrii, M. and Sakamoto, K.: J. Colloid Interface Sci.236 (2001) 7810.1006/jcis.2000.7393Suche in Google Scholar PubMed

15. Fanun, M. and Salah Al-Diyn, W.: J. Dispersion Sci. Technol.27 (2006) 1119. 10.1080/01932690600859093Suche in Google Scholar

16. Fanun, M. and Salah Al-Diyn, W.: Colloids Surf. A277 (2006) 83. 10.1016/j.colsurfa.2005.11.015Suche in Google Scholar

17. Eicke, H. F., Meier, W. and Hammerich, H.: Langmuir10 (1994) 2223. 10.1021/la00019a032Suche in Google Scholar

18. Lake, J. A.: Acta Crystallogr.23 (1967) 191. 10.1107/S0365110X67002440Suche in Google Scholar

19. Teubner, M. and Strey, R.: J. Chem. Phys.87 (1987) 3195. 10.1063/1.453006Suche in Google Scholar

20. Teukolsky, S. A., Vetterling, W. T. and Flannery, B. P.: Numerical Recipes in C: The Art of Scientific computing, New York: Cambridge University Press, 1992.Suche in Google Scholar

21. Brunner-Popela, J., Mittelbach, R., Strey, R., Schubert, K. V., Kaler, E. W. and Glatter, O.: J. Chem. Phys.21 (1999) 10623. 10.1063/1.478993Suche in Google Scholar

22. Fanun, M.: J. Colloid Interface Sci.343 (2010) 496. 10.1016/j.jcis.2009.12.008Suche in Google Scholar PubMed

23. Fanun, M.: Tenside Surf. Det.47 (2010) 3. In press.Suche in Google Scholar

24. Fanun, M.: J. Surfactants Detergents. DOI 10.1007/s11743-010-1187-6. In press.Suche in Google Scholar

25. Fanun, M.: J. Mol. Liquids150 (2009) 2532. 10.1016/j.molliq.2009.09.008Suche in Google Scholar

26. Ray, S. and Moulik, S. P.: J. Colloid Interface Science173 (1995) 28. 10.1006/jcis.1995.1292Suche in Google Scholar

27. Ajith, S., John, A.C. and Rakshit, A. R.: Pure & Appl. Chem.66 (1994) 509. 10.1351/pac199466030509Suche in Google Scholar

28. Majhi, P. R. and Moulik, S. P.: J. Disp. Sci. Technol20 (1999) 1407. 10.1080/01932699908943860Suche in Google Scholar

29. Paul, B. K. and Mitra, R. K.: Colloids and Surfaces A273 (2006) 129. 10.1016/j.colsurfa.2005.08.013Suche in Google Scholar

30. Mitra, R. K. and Paul, B. K.: Colloids and Surfaces A252 (2005) 243. 10.1016/j.colsurfa.2004.10.003Suche in Google Scholar

31. Mitra, R. K. and Paul, B. K.: Colloids and Surfaces A255 (2005) 165. 10.1016/j.colsurfa.2004.12.037Suche in Google Scholar

32. Mitra, R. K. and Paul, B. K.: J. Colloid Interface Sci.283 (2005) 565. 10.1016/j.jcis.2004.09.015Suche in Google Scholar PubMed

Received: 2010-03-24
Published Online: 2013-04-05
Published in Print: 2010-09-01

© 2010, Carl Hanser Publisher, Munich

Heruntergeladen am 16.11.2025 von https://www.degruyterbrill.com/document/doi/10.3139/113.110083/pdf
Button zum nach oben scrollen