Startseite Dynamics of Formation of Vesicles Studied by Highly Time-resolved Stopped-flow Experiments
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Dynamics of Formation of Vesicles Studied by Highly Time-resolved Stopped-flow Experiments

  • A. Barth , I. Grillo und M. Gradzielski
Veröffentlicht/Copyright: 5. April 2013
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Phase behaviour and static structure of surfactant systems have been studied in much detail, but this applies much less so to their dynamic properties. Structural transitions in amphiphilic systems can be triggered by mixing different amphiphiles. Employing the stopped-flow technique we have studied the kinetics of formation of multilamellar vesicles starting from a micellar solution and a microemulsion containing a semipolar oil. This process has been investigated for various starting conditions and as a function of the charging of the amphiphilic system. The formation process is the faster the closer the starting solution is in composition to the final state and can be slowed down by the presence of ionic surfactant.

Kurzfassung

Phasenverhalten und statische Struktur von Tensidsystemen sind umfassend untersucht worden, aber das gilt sehr viel weniger für ihre dynamischen Eigenschaften. Strukturelle Änderungen amphiphiler Systeme können durch Mischen unterschiedlicher Amphiphile herbeigeführt werden. Mit Hilfe der Stopped-Flow-Methode untersuchten wir die Bildung multilamellarer Vesikel aus mizellarer Lösung und Mikroemulsion mit solubilisiertem Additiv. Dieser Prozess wurde für unterschiedliche Ausgangsbedingungen und als Funktion der Aufladung des Systems untersucht. Dabei zeigte sich, dass der Bildungsprozess umso schneller ist je geringer die Änderung der Zusammensetzung ist und dass er durch Zusatz eines ionischen Tensids verlangsamt werden kann.


Michael Gradzielski, Straße des 17. Juni 124, 10623 Berlin, Tel.: 0049-30-314-24934, Fax: 0049-30-314-26602. E-Mail:

Anina Barth studied chemistry at the Technische Universität Chemnitz and did her Diploma work on the topic of dyes at the Max-Planck Institut für Kolloide und Grenzflächen in the group of Prof. M. Antonietti. Since 2005 she is a working on her Ph.D. in the research group of Prof. M. Gradzielski at the Technische Universität Berlin on the topic of dynamics of solubilisation in amphiphilic systems.

Isabelle Grillo did her studies and degree at the Ecole Nationale Supérieure de Chimie et de Physique de Bordeaux. Directly afterward she did her Ph.D. in Physical Chemistry in 1998 on the topic “Insertion de particules anisotropes dans des phases lamellaires tensioactives”, supervised by P. Levitz (CRMD-CNRS Orléans) and Th. Zemb (Service de Chimie Moléculaire, CEA Saclay). Since that time she is working at the Institute Laue-Langevin (Grenoble) first as a co-responsible of D22 and now as the responsible of the Chemistry Laboratory.

Michael Gradzielski studied chemistry at the Universität Bayreuth and at the University of Wisconsin – Madison (UW). He did his dissertation at the Universität Bayreuth on the topic of microemulsions and micromulsion gels in 1992 in the group of Prof. H. Hoffmann. After a post-doctoral stay at the Ecole Normale Superieure, Paris in the group of Prof. D. Langevin, he finished his habilitation for Physical Chemistry at the Universität Bayreuth in 2000. Since 2004 he is full professor for Physical Chemistry at the Technische Universität Berlin and is responsible for the field “Physikalische Chemie/Molekulare Materialwissenschaften”.


References

1. Gradzielski, M.: Curr. Opin. Colloid Interface Sci.8 (2003) 337. 10.1016/S1359-0294(03)00080-3Suche in Google Scholar

2. Patist, A., Oh, S. G., Leung, R., Shah, D. O.: Colloids and Surfaces A176 (2001) 3. 10.1016/S0927-7757(00)00610-5Suche in Google Scholar

3. Lang, J., Auborn, J. J. and Eyring, E. M.: J. Colloid Interface Sci.41 (1972) 484. 10.1016/0021-9797(72)90372-4Suche in Google Scholar

4. Yasunaga, T., Takeda, K. and Harada, S.: J. Colloid Interface Sci.42 (1973) 457. 10.1016/0021-9797(73)90312-3Suche in Google Scholar

5. Inoue, T., Ohshima, H., Kamaya, H. and Ueda, I.: Biochim Biophys Acta.117 (1985) 818.Suche in Google Scholar

6. Morris, J. S., Gibson, C. C., Smith, P. D., Greif, P. C., Stirk, C. W., Bradley, D., Haynes, D. H. and Blumenthal, R.: J. Biol. Chem. (1985) 4122.10.1016/S0021-9258(18)89240-7Suche in Google Scholar

7. Campbell, S. E., Zhang, Z., Friberg, S. E. and Patel, R.: Langmuir14 (1998) 590. 10.1021/la9707742Suche in Google Scholar

8. Schmölzer, S., Gräbner, D., Gradzielski, M. and Narayanan, T.: Phys. Rev. Lett.88 (2002) 258301. 10.1103/PhysRevLett.88.258301Suche in Google Scholar PubMed

9. Weiss, T. M., Narayanan, T., Gradzielski, M., Wolf, C., Panine, P., Finet, S. and Helsby, W. I.: Phys. Rev. Lett.94 (2005) 038303. 10.1103/PhysRevLett.94.038303Suche in Google Scholar PubMed

10. Rogerson, M. L., Robinson, B. H., Bucak, S. and Walde, P.: Colloids and Surfaces. B, Biointerfaces48 (2006) 24. 10.1016/j.colsurfb.2006.01.001Suche in Google Scholar PubMed

11. Zhang, J., Li, Y., Armes, J. S. and Liu, S.: J. Phys. Chem. B111 (2007) 12111. 10.1021/jp075018bSuche in Google Scholar PubMed

12. Mathai, J. C. and Zeidel, M. L.: Methods in Molecular Biology, in A. M.Dobico (Ed.), Methods in Membrane Lipids, Verlag Humana Press, Totowa400 (2007) 323. 10.1385/1597455199Suche in Google Scholar

13. Eastoe, J., Dalton, J. S., Downer, A., Jones, G. and Clarke, D.: Langmuir14 (1998) 1937. 10.1021/la971238cSuche in Google Scholar

14. Egelhaaf, S. U. and Schurtenberger, P.: Phys. Rev. Lett.82 (1999) 2804. 10.1103/PhysRevLett.82.2804Suche in Google Scholar

15. Impéror-Clerc, M., Grillo, I., Khodakov, A. Y., Durand, D. and Zholobenko, V. L.: Chem. Comm.23 (2007) 4199.Suche in Google Scholar

16. Abécassis, B., Testard, F., Spalla, O. and Barboux, P.: Nano Lett.7 (2007) 1723. 10.1021/nl0707149Suche in Google Scholar PubMed

17. Tabor, R. F., Eastoe, J. and Grillo, I.: Soft Matter5 (2009) 2125. 10.1039/b819196dSuche in Google Scholar

18. Rochette, C. N., Rosenfeldt, S., Heiss, A., Narayanan, T., Ballauff, M. and Jahnen-Dechent, W.: ChemBioChem10 (2009) 735. 10.1002/cbic.200800719Suche in Google Scholar PubMed

19. Weiss, T. M., Narayanan, T. and Gradzielski, M.: Langmuir24 (2008) 3759. 10.1021/la703515jSuche in Google Scholar PubMed

20. Bangham, A. D., Standish, M. M. and Watkins, J. C.: J. Mol. Biol.13 (1995) 239.Suche in Google Scholar

21. Gradzielski, M.: J. Phys: Condens. Matter15 (2003) R655. 10.1088/0953-8984/15/19/202Suche in Google Scholar

22. Israelachvili, J. N., Mitchell, D. J. and Ninham, B. W.: Biochim. Biophys. Acta470 (1977) 125.Suche in Google Scholar

23. Kaler, E. W., Herrington, K. L., Kamakkara Murthy, A., Zasadzinski, J. A. N.: J. Phys. Chem.96 (1992) 6698. 10.1021/j100195a033Suche in Google Scholar

24. Fukuda, H., Kawata, K., Okuda, H. and Regen, S. L.: J. Am. Chem. Soc.112 (1990) 1635. 10.1021/ja00160a057Suche in Google Scholar

25. Ninham, B. W., Evans, D. F. and Well, G. J.: J. Phys. Chem.87 (1983) 5020. 10.1021/j150642a049Suche in Google Scholar

26. Gradzielski, M., Müller, M., Bergmeier, M., Hoffmann, H. and Hoinkis, E.: J. Phys. Chem. B103 (1999) 1416. 10.1021/jp9833303Suche in Google Scholar

27. Gradzielski, M., Bergmeier, M., Hoffmann, H., Müller, M. and Grillo, I.: J. Phys. Chem. B104 (2000) 11594. 10.1021/jp0028913Suche in Google Scholar

28. Gradzielski, M., Grillo, I. and Narayanan, T.: Progr. Colloid Polym. Sci.129 (2004) 32.Suche in Google Scholar

29. Gebicki, J. M. and Hicks, M.: Chem. Phys. Lipids16 (1976) 142. 10.1016/0009-3084(76)90006-2Suche in Google Scholar

30. Hoffmann, H., Oetter, G. and Schwandner, B.: Progr. Colloid Polym. Sci.73 (1987) 95. 10.1007/3-798-50724-4Suche in Google Scholar

31. Miller, C. A., Gradzielski, M., Hoffmann, H., Kramer, U. and Thunig, C.: Prog. Colloid Polym. Sci.83 (1990) 167. 10.1007/BFb0116235Suche in Google Scholar

32. Gradzielski, M., Hoffmann, H. and Langevin, D.: J. Phys. Chem.99 (1995) 12612. 10.1021/j100033a039Suche in Google Scholar

33. Hoffmann, H., Horbaschek, K. and Witte, F.: J. Colloid Interface Sci.235 (2001) 33. 10.1006/jcis.2000.7238Suche in Google Scholar

34. Gradzielski, M., Hoffmann, H., Horbaschek, K. and Witte, F.: Stud. Surf. Sci. Catal.132 (2001) 589. 10.1016/S0167-2991(01)82160-1Suche in Google Scholar

35. Leng, J., Egelhaaf, S. U. and Cates, M. E.: Biophys. J.85 (2003) 1624. 10.1016/S0006-3495(03)74593-7Suche in Google Scholar

36. Shioi, A. and Hatton, T. A.: Langmuir18 (2002) 7341. 10.1021/la020268zSuche in Google Scholar

37. Ghosh, R. E., Egelhaaf, S. U. and Rennie, A. R.: A computing guide for small-angle scattering experiments. ILL98GH14T, 1998.Suche in Google Scholar

38. Witte, F.: Neuartige Vesikelphasen in Tensidsystemen mit Tetradecyldimethylaminoxid, Dissertation, Bayreuth (1999).Suche in Google Scholar

39. Oetter, G. and Hoffmann, H.: J. Dispersion Sci. Technol.9 (1989) 459. 10.1080/01932698808944005Suche in Google Scholar

40. Venable, R. L. and Nauman, R. V.: J. Phys. Chem.68 (1964) 3498. 10.1021/j100794a010Suche in Google Scholar

41. Farago, B. and Gradzielski, M.: J. Chem. Phys.114 (2001) 10105. 10.1063/1.1362690Suche in Google Scholar

42. Helfrich, W.: J. Phys. Condens. Matter6 (1994) A79. 10.1088/0953-8984/6/23A/009Suche in Google Scholar

43. Valiente, M., Thunig, C., Munkert, U., Lenz, U. and Hoffmann, H.: J. Colloid Interface Sci.160 (1993) 39. 10.1006/jcis.1993.1365Suche in Google Scholar

44. Beck, R., Gradzielski, M., Horbaschek, K., Shah, S. S., Hoffmann, H. and Strunz, P.: J. Colloid Interface Sci.221 (2000) 200. 10.1006/jcis.1999.6554Suche in Google Scholar PubMed

Received: 2010-02-10
Published Online: 2013-04-05
Published in Print: 2010-09-01

© 2010, Carl Hanser Publisher, Munich

Heruntergeladen am 16.11.2025 von https://www.degruyterbrill.com/document/doi/10.3139/113.110081/pdf
Button zum nach oben scrollen