Branched Alkyl Alcohol Propoxylated Sulfate Surfactants for Improved Oil Recovery
-
Y. Wu
Abstract
This investigation considers branched alkyl alcohol propoxylated sulfate surfactants as candidates for chemcial enhanced oil recovery (EOR) applications. Results show that these anionic surfactants may be preferred candidates for EOR as they can be effective at creating low interfacial tension (IFT) at dilute concentrations, without requiring an alkaline agent or cosurfactant. In addition, some of the formulations exhibit a low IFT at high salinity, and hence may be suitable for use in more saline reservoirs. Adsorption tests onto kaolinite clay indicate that the loss of these surfactants can be comparable to or greater than other types of anionic surfactants. Surfactant performance was evaluated in oil recovery core flood tests. Selected formulations recovered 35–50% waterflood residual oil even with dilute 0.2 wt% surfactant concentrations from Berea sandstone cores.
Kurzfassung
Diese Studie untersucht verzweigte Alkylalkoholpropoxysulfate für Anwendungen in der tertiären chemischen Erdölförderung (EOR). Die Ergebnisse zeigen, dass diese anionischen Tenside besonders für die EOR geeignet sind, da sie die Grenzflächenspannung (IFT) ohne alkalische Zusatzmittel oder Kotenside effektiv senken. Zusätzlich weisen einige Formulierungen eine geringe IFT bei hohen Salzgehalten auf und könnten daher für den Einsatz in Reservoiren mit hohen Salzgehalten brauchbar sein. Die Adsorptionsmessungen an Kaolin machen deutlich, dass der Verlust dieser Tenside vergleichbar oder größer ist als der anderer anionischer Tenside. Die Tensidwirksamkeit wurde in Bohrkernflutungstests ermittelt. Ausgewählte Formulierungen mit einer Tensidkonzentration von nur 0,2 wt% ermöglichten eine Produktion von 35–50% des Restöls aus den Bereasandsteinkernen.
References
1. Green, D. W. and Willhite, G. P.: Enhanced oil recovery. SPE Publications (1998) ISBN: 978-1-55563-077-5.Suche in Google Scholar
2. Reppert, T. R., Bragg, J. R., Wilkinson, J. R., Snow, T. M., MaerN.K., Jr. and Gale, W. W.: Second Ripley surfactant flood pilot test, proceedings SPE 20219, SPE/DOE Improved Oil Recovery Symposium, Tulsa, OK, April 22–25, (1990).Suche in Google Scholar
3. Garrett, H. E.: Surface active chemicals. Pergamon Press (1972).10.1016/B978-0-08-016422-9.50007-4Suche in Google Scholar
4. Maerker, J. M. and Gale, W. W.: Surfactant flood processd design for Loudon. SPERE (1992) 36–44.Suche in Google Scholar
5. U.S. D.O.E, Commerical scale demonstration, enhanced oil recovery by micellar-polymer flood. Bartelsville, OKI, USA (1977).Suche in Google Scholar
6. U.S. D.O.E, Big Muddy field low tension flood demonstration project. Bartelsville, OKI, USA (1979).Suche in Google Scholar
7. Ferrell, H. H., Gregory, M. D., Borah, M. T.: Progress report: Big Muddy field low-tension flood demonstration project with emphasis on injectivity and mobility, proceedings SPE 12682, SPE/DOE Improved Oil Recovery Symposium. Tulsa, OK, April 15–18 (1984).Suche in Google Scholar
8. Ferrell, H. H., King, D. W. and Sheely, C. Q.Jr.: Analysis of low-tension pilot at Big Muddy field. WY, SPEFE (1988) 351–321.Suche in Google Scholar
9. Huh, C., Lange, E. A. and Cannella, W. J.: Polymer retention in porous media, proceedings SPE 20235, SPE/DOE Improved Oil Recovery Symposium. Tulsa, OK, April 22–25 (1990).Suche in Google Scholar
10. Cole, E. L.: An evaluation of the Robinson M-1 commerical scale demonstration project of enhanced oil recovery by micellar-polymer flood, Report DOE/BC/10830-10, US DOE. Bartlesville, OK, USA, December (1988).Suche in Google Scholar
11. Cole, E. L.: An evaluation of the Big Muddy field low-tension flood demonstration project, Report DOE/BC/10830-9, US DOE. Bartlesville, OK, USA, December (1988).Suche in Google Scholar
12. Pitts, M. J.: Recent Field Work in the United States with Alkali-Surfactant, proceedings of the NSF Workshop. Use of Surfactants for Improved Petroleum Recovery, 22–23 October (2001).Suche in Google Scholar
13. Taugbol, K., van Ly, T. and Austad, T.: Chemical flooding of oil reservoirs. 2. Dissociative surfactant-polymer interaction with a positive effect on oil recovery, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 103 (1995) 83. 10.1016/0927-7757(95)03233-4Suche in Google Scholar
14. Austad, T.: A Review of Retention Mechanisms of Ethoxylated Sulfonates in Reservoir Cores, proceedings SPE 25174, SPE Symposium on Oilfield Chemistry. New Orleans, 2–5 March (1993).Suche in Google Scholar
15. Knaggs, E. A.et al.: Petroleum Sulfonate Utilization in Enhanced Oil Recover Systems, proceedings SPE Paper 6006, SPE Symposium. New Orleans, LA, 3–6 October, (1976).Suche in Google Scholar
16. Kumar, A., Neale, G. H. and Hornof, V.: Pulp. Pap. Can.85 (1984) 180–183.Suche in Google Scholar
17. Shankar, P. K., Bae, J. H. and Enick, R. M.: Salinity Tolerance and Solution Property Correlations of Petroleum Sulfonate-Cosurfactant Blends, proceedings SPE 10600, presented at SPE Symposium on Oilfield and Geothermal Chemistry, Dallas, 25–27 January (1982).Suche in Google Scholar
18. Barakat, Y., Fortney, L. N., Schechter, R. S., Wade, W. H. and Yiv, S.: Alpha Olefin Sulfonates for Enhanced Oil Recovery, proceedings 2nd European Symposium on EOR. Paris, 5–10 November, (1982).Suche in Google Scholar
19. Austad, T. and Strand, S.: Chemical Flooding of Oil Reservoirs 4. Effects of temperature and pressure on the middle phase solubilization parameters close to optimum flood conditions, Colloids and Surfaces A: Physiochemical and Engineering Aspects108 (1996) 243–252. 10.1016/0927-7757(95)03406-4Suche in Google Scholar
20. Mannhardt, K., Schramm, L. L. and Novosad, J. J.: Adsorption of anionic and amphoteric foam-forming surfactants on different rock types, Coll. and Surf. A68 (1992) 37–53. 10.1016/0166-6622(92)80146-SSuche in Google Scholar
21. Michels, A. M., Djojosoeparto, R. S., Haas, H., Mattern, R. B., van der Weg, P. B. and Schulte, W. M.: Enhanced Waterflooding Design with Dilute Surfactant Concentration for North Sea Conditions. SPE Reservoir Engineering, 1996.10.2118/35372-PASuche in Google Scholar
22. Bansal, V. K., Shah, D. O. and O'Connell, J. P.: Influence of alkyl chain length compatibility on microemulsion structure and solubilization. J. Colloid Interface Science75 (1980) 462. 10.1016/0021-9797(80)90471-3Suche in Google Scholar
23. Baviere, M., Ruaux, E. and Defives, D.: Sulfonate retention by kaolinite at high pH: Effect of inorganic anions, proceedings SPE 21031, SPE International Chemistry Symposium. Anaheim, CA, USA, 20–22th February (1991).Suche in Google Scholar
24. Andrews, V.et al.: Preliminary Studies of the Behavior of Some Commercially Available Surfactants in Hydrocarbon-Brine-Mineral Systems, proceedings of the third European Symposium on Enhanced Oil Recovery, in Bournemouth, U.K., edited by F.John Fayers, 62–80 (1981).Suche in Google Scholar
25. Austad, T., Ekrann, St., FjeldeI. and Taugbøl, K.: Chemical Flooding of Oil Reservoirs Part 9. Dynamic Adsorption of Surfactant onto Sandstone cores from Injection Water with and Without Polymer Present, Colloids and Surfaces A: Physiochemical and Engineering Aspects 127 (1997) 69–82.Suche in Google Scholar
26. Skauge, A. and Palmgren, O.: Phase Behavior and Solution Properties of Ethoxylated Anionic Surfactants, proceedings SPE 18499, presented at SPE Oilfield Chemistry Symposium. Houston, February 8–10 (1989).Suche in Google Scholar
27. Wang, Y.et al.: Surfactants Oil Displacement System in High Salinity Formations: Research and Application, proceedings SPE 70047, presented at SPE Permian Basin Oil and Gas Recovery Conference. Midland, Texas, 15–16 May (2001).Suche in Google Scholar
28. Osterioh, W. T. and Jante, M. J.: Surfactant-Polymer Flooding with Anionic PO/EO Surfactant Microemulsions Containing Polyethylene Glycol Additives, proceedings SPE/DOE 24151, presented the SPE/DOE Enhanced Oil Recovery Symposium. Tulsa, 22–24 April (1992).Suche in Google Scholar
29. Balzer, D. and Kosswig, K.: Die Phasen-Inversions-Temperatur als Auswahlkriterium für Tenside bei der tertiären Erdölgewinnung, Tenside Surfactants Detergents. 16 (1979) 256.Suche in Google Scholar
30. Stryker, A.: Selection and Design of Ethoxylated Carboxylates for Chemical Flooding, project report DOE FC22-83FE60149, NIPER-449, DE90000213, January (1990).10.2172/5111005Suche in Google Scholar
31. Bansel, B. B., Hornof, V. and Neale, G. H.: Can. J. Chem. Eng.57 (1979) 203–210. 10.1002/cjce.5450570212Suche in Google Scholar
32. Halbert, W. G.: Miscible Waterflooding Using a Phosphate Ester Solubilizer, proceedings SPE 3697, California Regional SPE Meeting. Los Angeles, 4–5 November (1971).Suche in Google Scholar
33. Wu, W. J., Vaskas, A., Delshad, M., Pope, G. A. and Sepehrnoori, K.: Design and Optimization of Low-Cost Chemical Flooding, proceedings SPE/DOE 35355, Symposium on Improved Oil Recovery. Tulsa, OK, 21–24 April (1996).Suche in Google Scholar
34. Iglauer, S., Wu, Y., Shuler, P. J., Tang, Y. and Goddard, W. A.: Alkyl Polyglycoside Surfactant – Alcohol Cosolvent Formulations for Improved Oil Recovery, Colloids and Surfaces A: Physicochemical and Engineering Aspects339 (2009) 48–59. 10.1016/j.colsurfa.2009.01.015Suche in Google Scholar
35. Hill, K., von Rybinski, W. and Stoll, G. (editors): Alkyl Polyglucosides, VCH, (1997), ISBN: 9783527294510.10.1002/9783527614691Suche in Google Scholar
36. Balzer, D. and Lüders, H. (editors): Nonionic Surfactants, Alkyl Polyglycosides, Surfactant Science Series, 91, Marcel Dekker (2000).Suche in Google Scholar
37. Jayanti, S., Britton, L. N., Dwarakanath, V. and Pope, G. A.: Laboratory evaluation of custom-designed surfactants to remediate NAPL source zones, Environ. Sci. Technol.36 (2002) 5491–5497. 10.1021/es020566iSuche in Google Scholar
38. Ooi, K. C., Dwarakanath, V., Holzmer, F. J. and Jackson, R. E.: Recent advances in surfactant remediation of contaminated soils, proceedings SPE 52732, SPE/EPA Environmental Conference. Austin, TX, USA, 1–3rd March (1999).Suche in Google Scholar
39. Aoudia, M., Wade, W. H. and Weerasooriya, U.: Optimum microemulsions formulated with propoxylated Guerbet alcohol and propoxylated tridecyl alcohol sodium sulfates, J. Dispersion Sci. Technol.16 (1996) 115–135. 10.1080/01932699508943664Suche in Google Scholar
40. Minana-Perez, M., Gracia, A., Lachaise, J. and Salager, J.: Solubilization of polar oils with extended surfactants. J. Colloids Surf. A100 (1995) 217–224. 10.1016/0927-7757(95)03186-HSuche in Google Scholar
41. Rosen, M. J., Wang, H., Shen, P. and Zhu, Y.: Ultralow interfacial tension for enhanced oil recovery at very low surfactant concentrations. Langmuir21 (2005) 3749–3756. 10.1021/la0400959Suche in Google Scholar PubMed
42. Sunwoo, C. K. and Wade, W. H.: Optimal surfactant structures for cosurfactant-free microemulsion systems, I. C16 and C14 Guerbet alcohol hydrophobes. Journal of Dispersion Science and Technology13, 5 (1992) 491–514. 10.1080/01932699208943330Suche in Google Scholar
43. Varadaraj, R., Bock, J., Valint, P., Zushma, S. and Thomas, R.: Fundamental interfacial properties of alkyl-branched sulfate and ethoxy sulfate surfactants derived from Guerbet alcohols. 1. Surface and instantaneous interfacial tensions. J. Phys. Chem.95 (1991) 1671. 10.1021/j100157a033Suche in Google Scholar
44. Varadaraj, R., Bock, J., Valint, P., Zushma, S. and Brons, N. J.: Fundamental interfacial properties of alkyl-branched sulfate and ethoxy sulfate surfactants derived from Guerbet alcohols. 2. Dynamic surface tension. J. Phys. Chem.95 (1991) 1677. 10.1021/j100157a034Suche in Google Scholar
45. Varadaraj, R., Bock, J., Valint, P., Zushma, S. and Brons, N. J.: Fundamental interfacial properties of alkyl-branched sulfate and ethoxy sulfate surfactants derived from Guerbet alcohols. 3. Dynamic contact angle and adhesion tension. J. Phys. Chem.95 (1991) 1679. 10.1021/j100157a035Suche in Google Scholar
46. Varadaraj, R., Bock, J., Valint, P. and Zushma, S.: Thermodynamics of adsorption and micellization in linear and Guerbet sulfate and ethoxy sulfate surfactants. J. Phys. Chem.95 (1991) 1682. 10.1021/j100157a036Suche in Google Scholar
47. Zhang, D. L., Shunhua, L., Puerto, M., Miller, C. A. and Hirasaki, G. J.: Wettability alteration and spontaneous imbibition in oil-wet carbonate formations, Journal of Petroleum Science and Engineering52 (2006) 213–226. 10.1016/j.petrol.2006.03.009Suche in Google Scholar
48. Seethepalli, A., Adibhatla, B. and Mohanty, K. K.: Physicochemical interactions during surfactant flooding of fractured carbonate reservoirs. SPEJ9, 4 (2004) 411–418. 10.2118/89423-PASuche in Google Scholar
49. Adibhatla, B. and Mohanty, K. K.: Oil recovery from fractured carbonates by surfactant-aided gravity drainage: laboratory experiments and mechanistic simulations, SPE Reservoir Evaluation & Engineering (2008) 119–130.Suche in Google Scholar
50. Kumar, K., Dao, E. K. and Mohanty, K. K.: Atomic force microscopy study of wettability alteration by surfactants. SPEJ (2008) 137–145.Suche in Google Scholar
51. Mohanty, K. K.: Dilute surfactant methods for carbonate formations, US-DOE final report, DE-FC26-02NT 15322, 2006. 10.2172/882209Suche in Google Scholar
52. Kelkar, M.: Exploitation and optimization of reservoir performance in Hunton formation, Oklahoma, US-DOE annual technical report, DE-FC26-00NT15125 (2003).Suche in Google Scholar
53. Cayias, J. L., Schechter, R. S. and Wade, W. H.: The Measurement of Low Interfacial Tension via the Spinning Drop Technique, section 17, Surfactant Applications (1977).Suche in Google Scholar
54. Mitchell, D. J. and Ninham, B. W.: Micelles, vesicles and microemulsions, Journal of the Chemical Society. Faraday Transactions vesicles and microemulsions, Journal of the Chemical Society. Faraday Transactions: Molecular and Chemical Physics, 77 (1981) 601–629.Suche in Google Scholar
55. Strey, R. and Jonströmer, M.: Role of Medium-Chain Alcohols in Interfacial Films of Nonionic Microemulaions. Journal of Physical Chemistry96 (1992) 4537–4542. 10.1021/j100190a075Suche in Google Scholar
56. DeGennes, P. and Taupin, C.: Microemulsions and the flexibility of oil-water interfaces, Journal of Physical Chemistry86 (1982) 2294–2304. 10.1021/j100210a011Suche in Google Scholar
57. Kahlweit, M., Busse, G. and Faulhaber, B.: Preparing Microemulsions with Alkyl Monoglucosides and the Role of n-Alcohols, Langmuir11 (1995) 3382–3387. 10.1021/la00009a019Suche in Google Scholar
58. Sabatini, D. A., Acosta, E. and Harwell, J. H.: Linker Molecules in Surfactant Mixtures. Current Opinion in Colloid and Interface Science8 (2003) 316–326. 10.1016/S1359-0294(03)00082-7Suche in Google Scholar
59. Goddard, W. A., Tang, Y., Shuler, P. J., Blanco, M., Jang, S. S., Lin, S. T., Maiti, P., Wu, Y., Iglauer, S. and Zhang, X.: Lower Cost Methods for Improved Oil Recovery (IOR) via Surfactant Flooding, DOE Project DE-FC 26-01BC15362, Final Report, September (2004).Suche in Google Scholar
60. Wu, Y., Shuler, P. J., Blanco, M., Tang, Y. and Goddard, W. A.: A Study of Branched Alcohol propoxylate Sulfate Surfactants for Improved Oil Recovery, proceedings SPE 95404, SPE Annual Technical Conference and Exhibition. Dallas, TX, USA, 9–12 October (2005).Suche in Google Scholar
61. Iglauer, S., Wu, Y., Shuler, P. J., Blanco, M., Tang, Y. and Goddard, W. A.: Alkylpolyglycoside Surfactants for Improved Oil Recovery, proceedings SPE/DOE 89472, SPE/DOE Improved Oil Recovery Symposium. Tulsa, OK, April 17–21 (2004).Suche in Google Scholar
62. Iglauer, S., Wu, Y., Shuler, P. J., Tang, Y., Blanco, M. and Goddard, W. A.: The influence of Alcohol Co-surfactants on the Interfacial Tensions of Alkylglycoside Surfactant Formulations vs. n-Octane, proceedings of the ACS 227th National Meeting, Division of Petroleum Chemistry. Anaheim, CA, USA (2004).Suche in Google Scholar
63. Healy, R. N. and Reed, R. L.: Improved Oil Recovery by Surfactant and Polymer Flooding. Academic Press (1977).Suche in Google Scholar
64. Shinoda, K. and Friberg, S.: Emulsion & Solubilization, John Wiley & Sons (1986).Suche in Google Scholar
65. Huh, C.: Equilibrium of a microemulsion that coexists with oil or brine. SPEJ23 (1983) 829–858. 10.2118/10728-PASuche in Google Scholar
66. Shinoda, K.: The correlation between the dissolution state of nonionic surfactant and the type of dispersion stabilized with the surfactant, Journal of Colloid and Interface Science24 (1967) 4. 10.1016/0021-9797(67)90270-6Suche in Google Scholar
67. Tang, Y., Shuler, P. J., Wu, Y. and Iglauer, S.: Chemical System for Improved Oil Recovery, US-Patent Application 20060046948 (2006).Suche in Google Scholar
68. Wu, Y., Iglauer, S., Shuler, P. J., Tang, Y., Blanco, M. and Goddard, W. A.: Synergistic Effect of Alkyl Polyglycoside and Sorbitan Mixtures on Lowering Interfacial Tension and Enhancing Oil Recovery, proceedings of the ACS 227th National Meeting, Division of Petroleum Chemistry. Anaheim, CA, USA 2004.Suche in Google Scholar
69. Cases, J. M. and Villieras, F.: Thermodynamic model of ionic and nonionic surfactants adsorption-abstraction on heterogenous surfaces. Langmuir8, 5 (1992) 1251–1264. 10.1021/la00041a005Suche in Google Scholar
70. Tiberg, F., Joensson, B., Tang, J. and Lindman, B.: Ellipsometry studies of the self-assembly of nonionic surfactants at the silica-water interface: equilibrium aspects. Langmuir10, 7 (1994) 2294–2300. 10.1021/la00019a045Suche in Google Scholar
71. Luciani, L. and Denoyel, R.: Adsorption of polydisperse surfactants on solid surfaces: an ellipsometric study. Journal of Colloid and Interface Science188, 1 (1997) 75–80. 10.1006/jcis.1996.4724Suche in Google Scholar
72. Bohmer, M., Koopal, L. K., Janssen, R., Lee, E. M., Thomas, R. K. and Rennie, A. R.: Adsorption of nonionic surfactants on hydrophilic surfaces. An experimental and theoretical study on association in the adsorbed layer. Langmuir8, 9 (1992) 2228–2239. 10.1021/la00045a027Suche in Google Scholar
73. Manne, S., Schaeffer, T. E., Huo, Q., Hansma, P. K., Morse, D., Stucky, G. D. and Aksay, I. A.: Gemini surfactants at solid-liquid interfaces: control of interfacial aggregate geometry. Langmuir13, 24 (1997) 6382–6387. 10.1021/la970070sSuche in Google Scholar
74. Hanna, H. S. and Somasundaran, P.: Physico-chemical aspects of adsorption at solid/liquid interfaces. II: Mahogany sulfonate/berea sandstone. kaolinite, in D. O.Shah, R. S.Schechter (eds.) Improved oil recovery surfactant polymer flooding (1977).Suche in Google Scholar
75. Yang, C. Z., Yan, H. K., Li, G. Z., Cui, G. Z. and Yuan, H.: Fundamental and advances in combined chemical flooding (in Chinese), China Petroleum Press (2002).Suche in Google Scholar
76. Mukerjee, P. and Anavil, A.: Adsorption of ionic surfactants to porous glass. Exclusion of micelles and other solutes form adsorbed layers and the problem of adsorption maxima, ACS Symposium Series8 (1974), 107–128. 10.1021/symposiumSuche in Google Scholar
77. Barakat, Y., El-Mergawy, S. A., El-Zein, S. M. and Mead, A. I.: Adsorption of alkylbenzene sulfonates onto mineral surfaces. Indian Journal of Chemical Technology2, 3 (1995) 162–166.Suche in Google Scholar
© 2010, Carl Hanser Publisher, Munich
Artikel in diesem Heft
- Contents/Inhalt
- 10.3139/113.100302
- Abstracts
- 10.3139/113.100304
- Analysis
- Reverse Phase HPLC Analysis of Commercial Surfactants used as Melt Additives
- Application
- Branched Alkyl Alcohol Propoxylated Sulfate Surfactants for Improved Oil Recovery
- Novel Surfactants
- Micellization of Gemini Surfactants in Polymer Solutions
- Physical Chemistry
- Properties of Microemulsions with Mixed Nonionic Surfactants and Mint Oil
- Adsorption and Desorption of Ionic Surfactants
- Sizes and Anisometricity of Micelles in Lyotropic Liquid Crystalline Mesophases: Sodium Lauryl Sulphate/Water/Decanol Lyotropic System
- Studies on Acoustic and Thermodynamic Behaviour of Terbium Laurate and Myristate in Mixed Organic Solvents
- Overview
- Nonionic Surfactants: An Overview
Artikel in diesem Heft
- Contents/Inhalt
- 10.3139/113.100302
- Abstracts
- 10.3139/113.100304
- Analysis
- Reverse Phase HPLC Analysis of Commercial Surfactants used as Melt Additives
- Application
- Branched Alkyl Alcohol Propoxylated Sulfate Surfactants for Improved Oil Recovery
- Novel Surfactants
- Micellization of Gemini Surfactants in Polymer Solutions
- Physical Chemistry
- Properties of Microemulsions with Mixed Nonionic Surfactants and Mint Oil
- Adsorption and Desorption of Ionic Surfactants
- Sizes and Anisometricity of Micelles in Lyotropic Liquid Crystalline Mesophases: Sodium Lauryl Sulphate/Water/Decanol Lyotropic System
- Studies on Acoustic and Thermodynamic Behaviour of Terbium Laurate and Myristate in Mixed Organic Solvents
- Overview
- Nonionic Surfactants: An Overview