Startseite Effect of Oleate/Bacteria Interactions on Dolomite Separation from Phosphate Ore
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Effect of Oleate/Bacteria Interactions on Dolomite Separation from Phosphate Ore

  • A. M. Elmahdy , A. A. El-Midany , N. A. Abdel-Khalek und S. E. El-Mofty
Veröffentlicht/Copyright: 5. April 2013
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

In conventional flotation, the sodium oleate is used as a collector for phosphate separation from silica. However, most of the phosphate deposits contain carbonate impurities, which deteriorate the flotation selectivity using sodium oleate. In this paper, the amenability of the carbonate separation from a sedimentary phosphate ore through bio-flotation process, as a one of various efforts to solve the carbonate problem, was tested. The interaction of two types of bacteria (Corynebacterium-diphtheriae-intermedius, CDI, and Pseudomonas aeruginosa, PA) with sodium oleate was investigated. The interaction between collector and bacteria was determined by Fourier Transform Infra-Red (FTIR) measurements, zeta potential before and after adsorption of bacteria, as well as frothing power. The results showed that bio-flotation could produce a phosphate concentrate of 0.85% MgO and 30.2% P2O5 with a recovery of 92% at pH 5.5, 1.25 kg/t sodium oleate, ≥ 1 × 108 cells of CDI bacteria. The specification of such concentrate could not be obtained by the conventional flotation experiments, in absence of bacteria, under similar conditions. This means that bacteria could play a significant role as a surface modifier due to its selective adsorption onto the mineral surface as well as its interaction with collector.

Kurzfassung

Bei der konventionellen Flotation wird Natriumoleat als Kollektor für die Phosphattrennung von Silica eingesetzt. Allerdings enthalten die meisten Phosphatvorkommen Carbonatverunreinigungen, die bei Verwendung von Natriumoleat das Trennungsvermögen der Flotation verschlechtern. In der vorliegenden Arbeit wurde untersucht, ob das Carbonatproblem mittels Abtrennung des Carbonats vom sedimentären Phosphaterz über einen biologischen Flotationsprozess gelöst werden kann. Es wurde die Wechselwirkung zweier Bakterientypen (Corynebacterium-diphtheriae-intermedius, CDI und Pseudomonas aeruginosa, PA) mit Natriumoleat untersucht. Für die Bestimmung der Wechselwirkung zwischen Kollektor und Bakterien wurden folgende Messmethoden eingesetzt: Fourier-Transformation Infrarot (FTIR)-Messungen, Zetapotential vor und nach Bakterienadsorption und Schaumvermögen nachgewiesen. Die Ergebnisse zeigen, dass die biologische Flotation eine Phosphatkonzentration von 0,85% MgO und 30,2% P2O5 erzeugen kann, mit einer Ausbeute von 92% bei pH 5,5, 1,25 kg/t Natriumoleat, = 1 × 108 Zellen von CDI Bakterien. Eine derartige Konzentration kann in Abwesenheit von Bakterien unter ähnlichen Bedingungen mit konventionellen Flotationsversuchen nicht erreicht werden. Dies bedeutet, dass Bakterien aufgrund ihrer selektiven Adsorption auf die Mineraloberfläche sowie ihrer Wechselwirkung mit dem Kollektor eine signifikante Rolle als Oberflächenmodifikator spielen können.


S. E. El-Mofty, Dept. of Mining Engineering, Faculty of Engineering, Cairo University, Giza, Egypt, Tel.: 202-35678526, Fax: 202-35723486, E-Mail:

Mr. A. Elmahdy is currently a graduate student at Mcgill University, Canada. His experience is focused on mineral sepration and surfactant selectivity. His master thesis studied the effect of bacteria on the improving the separation selectivity.

Dr. A. El-Midany has graduated from Materials science and engineering, University of Florida. He has a good experience in the field of applied surface chemistry, polymer science and engineering, ceramics as well as environmental issues related to materials and mineral conservation. His experience is extended to use of polymers and their membranes in the coating of surfaces on the purpose of modification and protection.

Prof. N. A. Abdel-Khalek is currently professor of Mineral Technology at Central Metallurgical R&D Institute (CMRDI). His research activities focused on surface coating, utilization of bacteria in mineral processing.

Prof. S. El-Mofty is currently professor of surface chemistry and mineral engineering at Faculty of Engineering, Cairo University. His research activities are in stone conservation, surfactant and polymeric coating, mineral processing.


References

1. El-Midany, A. A.: Separation of Dolomite from Phosphate Rock by Reactive Flotation. Ph.D. Thesis, University of Florida, USA, 2004.Suche in Google Scholar

2. Lawver, J. E., Weigel, R.L., Snow, R. E. and Hwang, C. L.: Phosphate reserves enhanced by beneficiation. Min. Congr. J.68 (1982) 2731.Suche in Google Scholar

3. El-Shall, H., Zhang, P. and Snow, R.: Minerals and Metallurgical Processing, Vol. 8 (1996) 135140.Suche in Google Scholar

4. El-Gillani, D. A. and Abouzeid, A. Z.: Int. J. Miner. Process., Vol. 38 (1993) 235256.10.1016/0301-7516(93)90077-NSuche in Google Scholar

5. Houot, R.: Int. J. Miner. Process., Vol. 9 (1982) 353-384.10.1016/0301-7516(82)90041-2Suche in Google Scholar

6. Somasundaran, P., Ren, Y. and Rao, M. Y.: Colloids and Surfaces, Vol. 133 (1998) 1333.10.1016/S0927-7757(97)00173-8Suche in Google Scholar

7. Geo, Z., Zheng, S. and Gu, Z.: Review of beneficiation technology for Florida high dolomite pebble. In: Beneficiation of Phosphates: Fundamentals and Technology. P. Zhang, H. El-Shall, P. Somasundaran, and R. Stana (Editors), SME, USA, Chapter21 (2002) 235245.Suche in Google Scholar

8. Rao, M. K. Y., Natarajan, K. A. and Somasundaran, P.: Minerals and Metallurgical Processing, Vol. 9 (1992) 95.Suche in Google Scholar

9. Natarajan, K. A. and Deo, N.: Int. J. Miner. Process., Vol. 62, No. 1-4 (2001) 143-157.10.1016/S0301-7516(00)00049-1Suche in Google Scholar

10. Smith, R. W., Misra, M. and Dubel, J.: Minerals Engineering, Vol. 4, No. 7–11 (1991) 11271141.10.1016/0892-6875(91)90088-DSuche in Google Scholar

11. Boice, C. M.: M.Sc. Thesis, University of Florida, FL, USA, 2000.Suche in Google Scholar

12. Attia, Y. A. and Elzeky, M. A.: Coal science and Technology, vol. 9, Processing and Utilization of High Sulfur Coal (1985) 673–682.Suche in Google Scholar

13. Rao, M. K. Y. and Somasundaran, P.: In: Flotation Science and Engineering, (ed.). K.A.Matis, Chapter 17 (1995) 455472.Suche in Google Scholar

14. Sharma, P. K.: Licenciate thesis Physico-chemical characterization of microbial cell surface and bioflotation of sulfide minerals, Lulea University of Technology1999.Suche in Google Scholar

15. Sharma, P. K., HanumanthaRao, Forssberg, K. S. E. and Natarajan, K. A.: Int. J. Miner. Proc.62 (2001) 3.10.1016/S0301-7516(00)00043-0Suche in Google Scholar

16. Elmahdy, A.: M.Sc. Thesis, Mining Eng. Dept., Faculty of Eng., Cairo University, Egypt, 2004.Suche in Google Scholar

17. Scott, W. W.: Standard method of chemical analysis, Longman, London, 1949.Suche in Google Scholar

18. Brock, T. D., Madigan, M. T., Martinko, J. M. and Parker, J.: Biology of microorganisms, Prentice Hall, Englewoods Cliffs, New Jersey, 1994.Suche in Google Scholar

19. XiapengZheng, Arps, P. J. and Smith, R. W.: Adhesion of two bacteria onto dolomite and apatite: their effect on dolomite depression in anionic flotation, Int. J. Miner. Process.62 (2001) 159172.Suche in Google Scholar

20. Deo, N. and Natarajan, K. A.: Biological removal of some flotation collector reagents from aqueous solutions and mineral surfaces, Minerals engineering, Vol. 11, No. 8 (1998) 717738.10.1016/S0892-6875(98)00058-2Suche in Google Scholar

Received: 2008-10-27
Revised: 2009-07-22
Published Online: 2013-04-05
Published in Print: 2009-11-01

© 2009, Carl Hanser Publisher, Munich

Heruntergeladen am 16.10.2025 von https://www.degruyterbrill.com/document/doi/10.3139/113.110039/html?lang=de
Button zum nach oben scrollen