Effect of Oleate/Bacteria Interactions on Dolomite Separation from Phosphate Ore
-
A. M. Elmahdy
Abstract
In conventional flotation, the sodium oleate is used as a collector for phosphate separation from silica. However, most of the phosphate deposits contain carbonate impurities, which deteriorate the flotation selectivity using sodium oleate. In this paper, the amenability of the carbonate separation from a sedimentary phosphate ore through bio-flotation process, as a one of various efforts to solve the carbonate problem, was tested. The interaction of two types of bacteria (Corynebacterium-diphtheriae-intermedius, CDI, and Pseudomonas aeruginosa, PA) with sodium oleate was investigated. The interaction between collector and bacteria was determined by Fourier Transform Infra-Red (FTIR) measurements, zeta potential before and after adsorption of bacteria, as well as frothing power. The results showed that bio-flotation could produce a phosphate concentrate of 0.85% MgO and 30.2% P2O5 with a recovery of 92% at pH 5.5, 1.25 kg/t sodium oleate, ≥ 1 × 108 cells of CDI bacteria. The specification of such concentrate could not be obtained by the conventional flotation experiments, in absence of bacteria, under similar conditions. This means that bacteria could play a significant role as a surface modifier due to its selective adsorption onto the mineral surface as well as its interaction with collector.
Kurzfassung
Bei der konventionellen Flotation wird Natriumoleat als Kollektor für die Phosphattrennung von Silica eingesetzt. Allerdings enthalten die meisten Phosphatvorkommen Carbonatverunreinigungen, die bei Verwendung von Natriumoleat das Trennungsvermögen der Flotation verschlechtern. In der vorliegenden Arbeit wurde untersucht, ob das Carbonatproblem mittels Abtrennung des Carbonats vom sedimentären Phosphaterz über einen biologischen Flotationsprozess gelöst werden kann. Es wurde die Wechselwirkung zweier Bakterientypen (Corynebacterium-diphtheriae-intermedius, CDI und Pseudomonas aeruginosa, PA) mit Natriumoleat untersucht. Für die Bestimmung der Wechselwirkung zwischen Kollektor und Bakterien wurden folgende Messmethoden eingesetzt: Fourier-Transformation Infrarot (FTIR)-Messungen, Zetapotential vor und nach Bakterienadsorption und Schaumvermögen nachgewiesen. Die Ergebnisse zeigen, dass die biologische Flotation eine Phosphatkonzentration von 0,85% MgO und 30,2% P2O5 erzeugen kann, mit einer Ausbeute von 92% bei pH 5,5, 1,25 kg/t Natriumoleat, = 1 × 108 Zellen von CDI Bakterien. Eine derartige Konzentration kann in Abwesenheit von Bakterien unter ähnlichen Bedingungen mit konventionellen Flotationsversuchen nicht erreicht werden. Dies bedeutet, dass Bakterien aufgrund ihrer selektiven Adsorption auf die Mineraloberfläche sowie ihrer Wechselwirkung mit dem Kollektor eine signifikante Rolle als Oberflächenmodifikator spielen können.
References
1. El-Midany, A. A.: Separation of Dolomite from Phosphate Rock by Reactive Flotation. Ph.D. Thesis, University of Florida, USA, 2004.Suche in Google Scholar
2. Lawver, J. E., Weigel, R.L., Snow, R. E. and Hwang, C. L.: Phosphate reserves enhanced by beneficiation. Min. Congr. J.68 (1982) 27–31.Suche in Google Scholar
3. El-Shall, H., Zhang, P. and Snow, R.: Minerals and Metallurgical Processing, Vol. 8 (1996) 135–140.Suche in Google Scholar
4. El-Gillani, D. A. and Abouzeid, A. Z.: Int. J. Miner. Process., Vol. 38 (1993) 235–256.10.1016/0301-7516(93)90077-NSuche in Google Scholar
5. Houot, R.: Int. J. Miner. Process., Vol. 9 (1982) 353-384.10.1016/0301-7516(82)90041-2Suche in Google Scholar
6. Somasundaran, P., Ren, Y. and Rao, M. Y.: Colloids and Surfaces, Vol. 133 (1998) 13–33.10.1016/S0927-7757(97)00173-8Suche in Google Scholar
7. Geo, Z., Zheng, S. and Gu, Z.: Review of beneficiation technology for Florida high dolomite pebble. In: Beneficiation of Phosphates: Fundamentals and Technology. P. Zhang, H. El-Shall, P. Somasundaran, and R. Stana (Editors), SME, USA, Chapter21 (2002) 235–245.Suche in Google Scholar
8. Rao, M. K. Y., Natarajan, K. A. and Somasundaran, P.: Minerals and Metallurgical Processing, Vol. 9 (1992) 95.Suche in Google Scholar
9. Natarajan, K. A. and Deo, N.: Int. J. Miner. Process., Vol. 62, No. 1-4 (2001) 143-157.10.1016/S0301-7516(00)00049-1Suche in Google Scholar
10. Smith, R. W., Misra, M. and Dubel, J.: Minerals Engineering, Vol. 4, No. 7–11 (1991) 1127–1141.10.1016/0892-6875(91)90088-DSuche in Google Scholar
11. Boice, C. M.: M.Sc. Thesis, University of Florida, FL, USA, 2000.Suche in Google Scholar
12. Attia, Y. A. and Elzeky, M. A.: Coal science and Technology, vol. 9, Processing and Utilization of High Sulfur Coal (1985) 673–682.Suche in Google Scholar
13. Rao, M. K. Y. and Somasundaran, P.: In: Flotation Science and Engineering, (ed.). K.A.Matis, Chapter 17 (1995) 455–472.Suche in Google Scholar
14. Sharma, P. K.: Licenciate thesis Physico-chemical characterization of microbial cell surface and bioflotation of sulfide minerals, Lulea University of Technology1999.Suche in Google Scholar
15. Sharma, P. K., HanumanthaRao, Forssberg, K. S. E. and Natarajan, K. A.: Int. J. Miner. Proc.62 (2001) 3.10.1016/S0301-7516(00)00043-0Suche in Google Scholar
16. Elmahdy, A.: M.Sc. Thesis, Mining Eng. Dept., Faculty of Eng., Cairo University, Egypt, 2004.Suche in Google Scholar
17. Scott, W. W.: Standard method of chemical analysis, Longman, London, 1949.Suche in Google Scholar
18. Brock, T. D., Madigan, M. T., Martinko, J. M. and Parker, J.: Biology of microorganisms, Prentice Hall, Englewoods Cliffs, New Jersey, 1994.Suche in Google Scholar
19. XiapengZheng, Arps, P. J. and Smith, R. W.: Adhesion of two bacteria onto dolomite and apatite: their effect on dolomite depression in anionic flotation, Int. J. Miner. Process.62 (2001) 159–172.Suche in Google Scholar
20. Deo, N. and Natarajan, K. A.: Biological removal of some flotation collector reagents from aqueous solutions and mineral surfaces, Minerals engineering, Vol. 11, No. 8 (1998) 717–738.10.1016/S0892-6875(98)00058-2Suche in Google Scholar
© 2009, Carl Hanser Publisher, Munich
Artikel in diesem Heft
- Contents/Inhalt
- Contents
- Abstracts
- Abstracts
- Application
- Ultrasonic Assisted Finishing of Cotton with Nonionic Softener
- Effect of Oleate/Bacteria Interactions on Dolomite Separation from Phosphate Ore
- Environmental Chemistry
- Automated Determination of Linear Alkylbenzene Sulphonate (LAS) in Wastewater Treatment Plants Effluents Using on Line Solid-phase Extraction Followed by HPLC with Fluorescence Detection
- Novel Surfactants
- Effect of Calcium Ions Concentration on the Foaming Power of Anionic Surfactants
- Lauryl Trimethyl Ammoniums with New Type Counteranions
- Physical Chemistry
- Extraction of Copper(II) from Sulphate Aqueous Medium with N,N′-bis(2-hydroxy-1-naphthalideneaminoethyl)amine Polydentate Schiff Base in Aqueous Two-phase Micellar of Non-Ionic Surfactant
- Effect of Cellulase Enzyme on Cellulose Nano-topography
- Review
- Synthesis, Structural Properties and Applications of Gemini Surfactants: A Review
Artikel in diesem Heft
- Contents/Inhalt
- Contents
- Abstracts
- Abstracts
- Application
- Ultrasonic Assisted Finishing of Cotton with Nonionic Softener
- Effect of Oleate/Bacteria Interactions on Dolomite Separation from Phosphate Ore
- Environmental Chemistry
- Automated Determination of Linear Alkylbenzene Sulphonate (LAS) in Wastewater Treatment Plants Effluents Using on Line Solid-phase Extraction Followed by HPLC with Fluorescence Detection
- Novel Surfactants
- Effect of Calcium Ions Concentration on the Foaming Power of Anionic Surfactants
- Lauryl Trimethyl Ammoniums with New Type Counteranions
- Physical Chemistry
- Extraction of Copper(II) from Sulphate Aqueous Medium with N,N′-bis(2-hydroxy-1-naphthalideneaminoethyl)amine Polydentate Schiff Base in Aqueous Two-phase Micellar of Non-Ionic Surfactant
- Effect of Cellulase Enzyme on Cellulose Nano-topography
- Review
- Synthesis, Structural Properties and Applications of Gemini Surfactants: A Review