Home Physical Sciences Removal of Brilliant Blue R from Aqueous Solutions on Activated Carbon Produced from Carbonaceous Substrate
Article
Licensed
Unlicensed Requires Authentication

Removal of Brilliant Blue R from Aqueous Solutions on Activated Carbon Produced from Carbonaceous Substrate

  • S. Alam , M. Ahmad and F. K. Bangash
Published/Copyright: April 2, 2013
Become an author with De Gruyter Brill

Abstract

Adsorption of brilliant blue R on activated carbon produced from the wood of Paulownia Tomentosa was investigated. Samples characterization by XRD, SEM, EDS and FTIR showed that the oxygen containing surface functional groups (carboxyls, lactones or phenols and ethers) were present on the surface which were eliminated at 800°C. Activation at 800°C, resulted in the opening of porous structure thereby increasing the adsorption capacity. Relatively high amounts of carbon with respect to oxygen were found in the samples with the rise in activation temperature. The adsorption kinetic at 10 and 45°C showed that the first order, Bangham and parabolic diffusion models are applied to the data. The rate constant increased with the rise in temperature of adsorption/activation. Thermodynamic properties (ΔE≠, ΔH≠, ΔS≠ and ΔGo) for the adsorption process were calculated. Positive values of ΔH≠ showed that the adsorption of brilliant blue R is endothermic. Negative values of ΔS≠ reflected the decrease in the disorder of the system at the solid-solution interface during adsorption. The Gibbs free energy, which is the driving force for adsorption is negative indicating spontaneous adsorption. Freundlich and Langmuir models described the equilibrium adsorption data and Thomas model was used for the column study.

Kurzfassung

Die Adsorption von Brillant Blau R über Aktivkohle, hergestellt aus dem Holz Paulownia Tomentosa, wurde untersucht. Die Probencharakterisierung mittels XRD, SEM, EDS und FTIR zeigte, dass sauerstoffhaltige oberflächenfunktionale Gruppen (Carboxyle, Lactone oder Phenole und Ether) an der Oberfläche gegenwärtig waren, die bei 800°C eliminiert wurden. Die Aktivierung bei 800°C resultiert dabei aus der Öffnung poröser Strukturen mit einer Erhöhung der Adsorptionskapazität. Bezüglich des Sauerstoffs wurden mit Anhebung der Aktivierungstemperatur relativ hohe Mengen an Kohlenstoff in den Proben gefunden. Die Adsorptionskinetik bei 10 und 45°C zeigte anhand der Daten, dass eine Adsorption erster Ordnung, Bangham und das parabolische Diffusionsmodell angewendet werden können. Die Geschwindigkeitskonstante erhöhte sich mit Anhebung der Adsorptions-/Aktivierungs-Temperatur. Die thermodynamischen Eigenschaften (ΔE≠, ΔH≠, ΔS≠ und ΔGo) wurden für den Adsorptionsprozess berechnet. Die positiven Werte für ΔH≠ zeigten eine endotherme Adsorption von Brillant Blau R. Die negative Werte für ΔS≠ reflektieren eine Abnahme der Unordnung im System an der festen Lösungsgrenzfläche während der Adsorption. Die Gibb'sche freie Energie als treibende Kraft der Adsorption ist negativ, was eine spontane Adsorption anzeigt. Die Modelle nach Freundlich und Langmuir beschreiben die Werte der Gleichgewichtsadsorption und für die Säulenuntersuchung wurde das Thomas-Modell eingesetzt.


Dr. Sultan Alam, Department of Chemistry, University of Malakand, Ckakdara Malakand, NWFP, Pakistan, E-Mail:

Dr. Sultan Alam is Assistant Professor in Physical Chemistry, University of Malakand, at Chakdara, Dir (L), Pakistan. He received M.Sc, M.Phil and Ph.D in Chemistry from the Department of Chemistry University of Peshawar. His research interest includes: Conversion of low cost precursors into activated carbon like agricultural waste material, fast growing wood, animal bones. – Characterization of adsorbents by surface area (BET, DR, BJH, and Langmuir), pore size distribution, FTIR, XRD, SEM and EDS. – Surface Chemistry at solid-liquid interface i.e. activated carbon, clays and soil. – Removal of organic and in-organic pollutants from aqueous solutions by active adsorbents like activated carbon, clays and soil breakthrough technique for the utilization of low cost adsorbents into industrial effluents treatments.

Dr. Manzoor Ahmad is Assistant Professor in Organic Chemistry, University of Malakand, at Chakdara, Dir (L), Pakistan. He received M.Sc and M.Phil degrees in Chemistry from University of Peshawar and Ph.D from H.E.J Research Institute, University of Karachai, Pakistan. His research interest is phytochemistry. He is also working in the interpretation of FTIR, NMR, Mass spectra.

Dr. Fazlullah Khan Bangash is Associate Professor in Physical Chemistry, University of Peshawar, Pakistan. He received M.Sc from Gomal University, D.I.Khan, M.Phil and Ph.D in Physical Chemistry from University of Peshawar, Pakistan. His research interest is the characterization of adsorbents, water pollution and surface chemistry at the solid-liquid interface.


References

1.McKay, G. and Sweeney, A. G.: Wat. Air Soil Pollut.4 (1980) 3.Search in Google Scholar

2.Pearce, C. I., Lloyd, J. R. and Guthrie, J. T.: Dyes Pig.58 (2003) 179.10.1016/S0143-7208(03)00064-0Search in Google Scholar

3.Robinson, T., McMullan, G., Marchant, R. and NigamP.: Bioresour. Technol.77 (2001), 247.10.1016/S0960-8524(00)00080-8Search in Google Scholar

4.Ghoreishi, S. M. and Haghighi, R.: Chem. Eng. J.95 (2003) 163.10.1016/S1385-8947(03)00100-1Search in Google Scholar

5.Marco, A., Esplugas, S. and Saum, G.: Water Sci. Technol.35 (1997), 231.10.2166/wst.1997.0147Search in Google Scholar

6.Pereira, M. F. R., Soares, S. F., Orfao, J. J. M. and Figueiredo, J. L.: Carbon41 (2003), 811.10.1016/S0008-6223(02)00406-2Search in Google Scholar

7.Crini, G.: Bioresou. Technol.97 (2006), 1061.10.1016/j.biortech.2005.05.001Search in Google Scholar

8.Choy, K. K. H., Porter, J. F. and McKay, G.: J. Chem. Eng.45 (2000) 575.Search in Google Scholar

9.Iqbal, Y., Alam, S. and Muhammad, M.: J. Chem. Soc. Pak.20 (1998), 46.Search in Google Scholar

10.Park, S. and Ki-Dong, K.: Carbon39 (2001) 1741.10.1016/S0008-6223(00)00305-5Search in Google Scholar

11.Cooke, N. E., Fuller, O. M. and Gaikwad, R. P.: Fuel65 (1986) 1254.10.1016/0016-2361(86)90238-3Search in Google Scholar

12.Yan, R., Chin, T. N. G., Ling, Y., Duan, H., Tee Liang, D. and Tay, H. J.: Environ. Sci. Technol.38 (2004) 316.10.1021/es0303992Search in Google Scholar PubMed

13.Ahmad, I., Khan, M. A., Ishaq, M. and Shakirullah Bahader, M. A..: J. Eng. Appl. Sci.23 (2004) 117.Search in Google Scholar

14.Laidler, K. L.: Chemical Kinetics, McGraw-Hill, New York, 1965.Search in Google Scholar

15.Iqbal, Y., Khan, M. A. and Ihsanullah, N. A.: Inter. J. Envi. Stud.62 (2005) 47.10.1080/0020723042000253875Search in Google Scholar

16.Vadivelan, V. and Kumar, K. V. J..: Colloid Interf. Sci.286 (2005) 90.10.1016/j.jcis.2005.01.007Search in Google Scholar

17.Weber, J. W. J. and Morris, J. C.: Kinetics of adsorption on carbon from solution. J. Sanit. Eng. Div. ASCE 89 (SA2),1963, p. 31.10.1061/JSEDAI.0000430Search in Google Scholar

18.Aharoni, C., Sideman, S. and Hoffer, E.: J. Chem. Technol. Biotechnol.29 (1979) 404.10.1002/jctb.503290703Search in Google Scholar

19.Freundlich, H.: Colloid and Capillary Chemistry. E.P. Dutton and Co., New York. 1928.Search in Google Scholar

20.Ng, C., Losso, J. N., Marshall, W. E. and Rao, R. M.: Bioresour. Technol.85 (2005) 131.10.1016/S0960-8524(02)00093-7Search in Google Scholar

21.Liu, Y.: Colloids Surf. A: Physicochem. Eng. Aspects274 (2006) 34.10.1016/j.colsurfa.2005.08.029Search in Google Scholar

22.Banat, F. A. and Al-Asheh, S.: Adsor. Sci. Technol.19 (2001) 256.Search in Google Scholar

Received: 2009-01-06
Revised: 2009-04-01
Published Online: 2013-04-02
Published in Print: 2009-07-01

© 2009, Carl Hanser Publisher, Munich

Downloaded on 21.1.2026 from https://www.degruyterbrill.com/document/doi/10.3139/113.110025/html
Scroll to top button