Removal of Brilliant Blue R from Aqueous Solutions on Activated Carbon Produced from Carbonaceous Substrate
-
S. Alam
, M. Ahmad and F. K. Bangash
Abstract
Adsorption of brilliant blue R on activated carbon produced from the wood of Paulownia Tomentosa was investigated. Samples characterization by XRD, SEM, EDS and FTIR showed that the oxygen containing surface functional groups (carboxyls, lactones or phenols and ethers) were present on the surface which were eliminated at 800°C. Activation at 800°C, resulted in the opening of porous structure thereby increasing the adsorption capacity. Relatively high amounts of carbon with respect to oxygen were found in the samples with the rise in activation temperature. The adsorption kinetic at 10 and 45°C showed that the first order, Bangham and parabolic diffusion models are applied to the data. The rate constant increased with the rise in temperature of adsorption/activation. Thermodynamic properties (ΔE≠, ΔH≠, ΔS≠ and ΔGo) for the adsorption process were calculated. Positive values of ΔH≠ showed that the adsorption of brilliant blue R is endothermic. Negative values of ΔS≠ reflected the decrease in the disorder of the system at the solid-solution interface during adsorption. The Gibbs free energy, which is the driving force for adsorption is negative indicating spontaneous adsorption. Freundlich and Langmuir models described the equilibrium adsorption data and Thomas model was used for the column study.
Kurzfassung
Die Adsorption von Brillant Blau R über Aktivkohle, hergestellt aus dem Holz Paulownia Tomentosa, wurde untersucht. Die Probencharakterisierung mittels XRD, SEM, EDS und FTIR zeigte, dass sauerstoffhaltige oberflächenfunktionale Gruppen (Carboxyle, Lactone oder Phenole und Ether) an der Oberfläche gegenwärtig waren, die bei 800°C eliminiert wurden. Die Aktivierung bei 800°C resultiert dabei aus der Öffnung poröser Strukturen mit einer Erhöhung der Adsorptionskapazität. Bezüglich des Sauerstoffs wurden mit Anhebung der Aktivierungstemperatur relativ hohe Mengen an Kohlenstoff in den Proben gefunden. Die Adsorptionskinetik bei 10 und 45°C zeigte anhand der Daten, dass eine Adsorption erster Ordnung, Bangham und das parabolische Diffusionsmodell angewendet werden können. Die Geschwindigkeitskonstante erhöhte sich mit Anhebung der Adsorptions-/Aktivierungs-Temperatur. Die thermodynamischen Eigenschaften (ΔE≠, ΔH≠, ΔS≠ und ΔGo) wurden für den Adsorptionsprozess berechnet. Die positiven Werte für ΔH≠ zeigten eine endotherme Adsorption von Brillant Blau R. Die negative Werte für ΔS≠ reflektieren eine Abnahme der Unordnung im System an der festen Lösungsgrenzfläche während der Adsorption. Die Gibb'sche freie Energie als treibende Kraft der Adsorption ist negativ, was eine spontane Adsorption anzeigt. Die Modelle nach Freundlich und Langmuir beschreiben die Werte der Gleichgewichtsadsorption und für die Säulenuntersuchung wurde das Thomas-Modell eingesetzt.
References
1.McKay, G. and Sweeney, A. G.: Wat. Air Soil Pollut.4 (1980) 3.Search in Google Scholar
2.Pearce, C. I., Lloyd, J. R. and Guthrie, J. T.: Dyes Pig.58 (2003) 179.10.1016/S0143-7208(03)00064-0Search in Google Scholar
3.Robinson, T., McMullan, G., Marchant, R. and NigamP.: Bioresour. Technol.77 (2001), 247.10.1016/S0960-8524(00)00080-8Search in Google Scholar
4.Ghoreishi, S. M. and Haghighi, R.: Chem. Eng. J.95 (2003) 163.10.1016/S1385-8947(03)00100-1Search in Google Scholar
5.Marco, A., Esplugas, S. and Saum, G.: Water Sci. Technol.35 (1997), 231.10.2166/wst.1997.0147Search in Google Scholar
6.Pereira, M. F. R., Soares, S. F., Orfao, J. J. M. and Figueiredo, J. L.: Carbon41 (2003), 811.10.1016/S0008-6223(02)00406-2Search in Google Scholar
7.Crini, G.: Bioresou. Technol.97 (2006), 1061.10.1016/j.biortech.2005.05.001Search in Google Scholar
8.Choy, K. K. H., Porter, J. F. and McKay, G.: J. Chem. Eng.45 (2000) 575.Search in Google Scholar
9.Iqbal, Y., Alam, S. and Muhammad, M.: J. Chem. Soc. Pak.20 (1998), 46.Search in Google Scholar
10.Park, S. and Ki-Dong, K.: Carbon39 (2001) 1741.10.1016/S0008-6223(00)00305-5Search in Google Scholar
11.Cooke, N. E., Fuller, O. M. and Gaikwad, R. P.: Fuel65 (1986) 1254.10.1016/0016-2361(86)90238-3Search in Google Scholar
12.Yan, R., Chin, T. N. G., Ling, Y., Duan, H., Tee Liang, D. and Tay, H. J.: Environ. Sci. Technol.38 (2004) 316.10.1021/es0303992Search in Google Scholar PubMed
13.Ahmad, I., Khan, M. A., Ishaq, M. and Shakirullah Bahader, M. A..: J. Eng. Appl. Sci.23 (2004) 117.Search in Google Scholar
14.Laidler, K. L.: Chemical Kinetics, McGraw-Hill, New York, 1965.Search in Google Scholar
15.Iqbal, Y., Khan, M. A. and Ihsanullah, N. A.: Inter. J. Envi. Stud.62 (2005) 47.10.1080/0020723042000253875Search in Google Scholar
16.Vadivelan, V. and Kumar, K. V. J..: Colloid Interf. Sci.286 (2005) 90.10.1016/j.jcis.2005.01.007Search in Google Scholar
17.Weber, J. W. J. and Morris, J. C.: Kinetics of adsorption on carbon from solution. J. Sanit. Eng. Div. ASCE 89 (SA2),1963, p. 31.10.1061/JSEDAI.0000430Search in Google Scholar
18.Aharoni, C., Sideman, S. and Hoffer, E.: J. Chem. Technol. Biotechnol.29 (1979) 404.10.1002/jctb.503290703Search in Google Scholar
19.Freundlich, H.: Colloid and Capillary Chemistry. E.P. Dutton and Co., New York. 1928.Search in Google Scholar
20.Ng, C., Losso, J. N., Marshall, W. E. and Rao, R. M.: Bioresour. Technol.85 (2005) 131.10.1016/S0960-8524(02)00093-7Search in Google Scholar
21.Liu, Y.: Colloids Surf. A: Physicochem. Eng. Aspects274 (2006) 34.10.1016/j.colsurfa.2005.08.029Search in Google Scholar
22.Banat, F. A. and Al-Asheh, S.: Adsor. Sci. Technol.19 (2001) 256.Search in Google Scholar
© 2009, Carl Hanser Publisher, Munich
Articles in the same Issue
- Contents/Inhalt
- Contents
- Abstracts
- Abstracts
- Application
- Phase Behavior of Engkabang Fat with Nonionic Surfactants
- Environmental Chemistry
- Liquid Chromatography with Fluores-cence Detection as a Tool for Separation of Endocrine Disrupting Alkylphenols and their Mono- and Diethoxylates in Analysis of River Water Samples
- Removal of Brilliant Blue R from Aqueous Solutions on Activated Carbon Produced from Carbonaceous Substrate
- Physical Chemistry
- Synthesis and Surface Properties of Trisiloxane-modified Oligo(ethylene oxide)
- Kinetic and Mechanistic Study of the Influence of Micelles on the Oxidation of Acetone by N-Bromophthalimide in Aqueous Acetic Acid Medium
- Synthesis
- Synthesis of Cationic Surfactant Intermediates 3-(dimethylamino)-propane-1,2-di-alkylcarbamate
- Technical Chemistry
- Olefins Derived from Vegetable Oils and their Utilization in Preparation of Surface Active Agent
Articles in the same Issue
- Contents/Inhalt
- Contents
- Abstracts
- Abstracts
- Application
- Phase Behavior of Engkabang Fat with Nonionic Surfactants
- Environmental Chemistry
- Liquid Chromatography with Fluores-cence Detection as a Tool for Separation of Endocrine Disrupting Alkylphenols and their Mono- and Diethoxylates in Analysis of River Water Samples
- Removal of Brilliant Blue R from Aqueous Solutions on Activated Carbon Produced from Carbonaceous Substrate
- Physical Chemistry
- Synthesis and Surface Properties of Trisiloxane-modified Oligo(ethylene oxide)
- Kinetic and Mechanistic Study of the Influence of Micelles on the Oxidation of Acetone by N-Bromophthalimide in Aqueous Acetic Acid Medium
- Synthesis
- Synthesis of Cationic Surfactant Intermediates 3-(dimethylamino)-propane-1,2-di-alkylcarbamate
- Technical Chemistry
- Olefins Derived from Vegetable Oils and their Utilization in Preparation of Surface Active Agent