Startseite Simulation-Aided Process Chain Design for the Manufacturing of Hybrid Shafts
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Simulation-Aided Process Chain Design for the Manufacturing of Hybrid Shafts

  • B.-A. Behrens , B. Breidenstein , D. Duran , S. Herbst , R. Lachmayer , S. Löhnert , T. Matthias , I. Mozgova , F. Nürnberger , V. Prasanthan , R. Siqueira , F. Töller und P. Wriggers
Veröffentlicht/Copyright: 3. April 2019
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Researchers of the Collaborative Research Centre CRC 1153 are investigating novel process chains to manufacture function-adapted and lightweight machine components. In each step of the process chain, numerical simulation tools are utilised in the process design to take into account locally specific material behaviour under particular processing conditions. In this paper, solution approaches associated with the modelling of manufacturing processes are presented.

Kurzfassung

Wissenschaftler des Sonderforschungsbereichs SFB 1153 untersuchen neuartige Prozessketten zur Herstellung hybrider Bauteile für funktionsangepasste und gewichtsreduzierte Maschinenkomponenten. In jedem Schritt der Prozesskette werden numerische Simulationswerkzeuge eingesetzt, um das lokal spezifische Werkstoffverhalten unter den jeweiligen Prozessbedingungen bei der Prozessauslegung berücksichtigen zu können. Entsprechende Lösungsansätze zur Modellierung der relevanten Fertigungsschritte werden in diesem Beitrag vorgestellt.


8 (Corresponding author/Kontakt)

References

1. Klein, M.; Thorenz, B.; Lehmann, C.; Boehner, J.; Steinhilper, R.: Integrating new technologies and materials by reengineering: selected case study results. Procedia CIRP50 (2016), pp. 147152, 10.1016/j.procir.2016.05.009Suche in Google Scholar

2. Dauensteiner, A.: Karosseriewerkstoffe auf dem Weg zum Ein-Liter-Auto – Der Weg zum Ein-Liter-Auto. Springer, Berlin, Germany, 2002, pp. 65112, 10.1007/978-3-642-59378-9_5Suche in Google Scholar

3. Neukirchner, H.; Findeisen, B.; Kromer, B.: Leichtmetall-Zylinderkurbelgehäuse mit Stützstrukturen. MTZ Motortechnische Zeitschrift61 (2000) 12, pp. 862870, 10.1007/bf03255051Suche in Google Scholar

4. Noaker, P. M.: New waves in manufacturing – Material matters. Manuf. Engin.116 (1996), pp. 4554Suche in Google Scholar

5. Ullman, D. G.: The Mechanical Design Process. 4th ed., McGraw-Hill Education, NY, USA, 2009. – ISBN 978-0072975741Suche in Google Scholar

6. Brockmoeller, T.; Gembarski, P. C.; Mozgova, I.; Lachmayer, R.: Design Catalogue in a CAE Environment for the Illustration of Tailored Forming. Proc. 59th Ilmenau Scientific Coll., 11.-15.09.17, Ilmenau, Germany, ilmedia, 2017, URN: urn:nbn:de:gbv:ilm1-2017iwk-110:2Suche in Google Scholar

7. Cazacu, R.; Grama, L.: Overview of structural topology optimization methods for plane and solid structures. Annals of the University of Oradea, Fascicle of Management and Technological Engineering23 (2014) 3, pp. 15831591, 10.15660/auofmte.2014-3.3043Suche in Google Scholar

8. Siqueira, R.; Mozgova, I.; Lachmayer, R.: An Interfacial Zone Evolutionary Optimization Method with Manufacturing Constraints for Hybrid Components. J. Comp. Des. Eng. Advance online publication, 2018, 10.1016/j.jcde.2018.10.003Suche in Google Scholar

9. Chavdar, B.; Goldstein, R.; Yang, X.; Butkovich, J.; Ferguson, L.: Hot Hydroforging for Lightweighting. Proc. 5th Int. Conf. on Distortion Engineering, IDE, 23.-25.09.15, Bremen, Germany, 2015, on CDSuche in Google Scholar

10. Saunders, N.; Guo, U. K. Z.; Li, X.; Miodownik, A. P.; Schillé, J.-Ph.: Using JMatPro to model materials properties and behaviour. JOM55 (2006) 12, pp. 6065, 10.1007/s11837-003-0013-2Suche in Google Scholar

11. Behrens, B.-A.; Bouguecha, A.; Frischkorn, C.; Huskic, A.; StakhievaA.; Duran, D.: Tailored Forming Technology for Three Dimensional Components: Approaches to Heating and Forming. Proc. 5th Int. Conf. on Thermomechanical Processing, 26.-28.10.16, Milan, Italy, ASMET, 2016, on CDSuche in Google Scholar

12. Cui, W.; Wisnom, M. R.: A combined stress-based and fracture-mechanics-based model for predicting delamination in composites. Composites24 (1993) 6, S. 467474, 10.1016/0010-4361(93)90016-2Suche in Google Scholar

13. Xu, X.-P.; Needleman, A.: Numerical simulations of fast crack growth in brittle solids. J. Mech. Phys. Solids42 (1994) 9, pp. 13971434, 10.1016/0022-5096(94)90003-5Suche in Google Scholar

14. Reinsch, S.; Schott, A.; Specker, A.: Warm forging of a connecting rod. The Minerals, Metals & Materials Science, 2007Suche in Google Scholar

15. Uthaisangsuk, V.; Prahl, U.; Bleck, W.: Micromechanical modelling of damage behavior of multiphase steels. Comp. Mat. Sci.43 (2008) 1, pp. 2735, 10.1016/j.commatsci.2007.07.035Suche in Google Scholar

16. Behrens, B.-A.; Bouguecha, A; Vucetic, M.; Peshekhodov, I.; Matthias, T.; Kolbasnikov, N.; Sokolov, S.; Ganin, S.: Experimental Investigations on the State of the Friction-Welded Joint Zone in Steel Hybrid Components after Process-Relevant Thermo-Mechanical Loadings. Proc. ESAFORM 2016 AIP Conf. Vol. 1769, AIP Publ., 2016, 130013-1130013-6, 10.1063/1.4963532Suche in Google Scholar

17. Lemaitre, J.: A Continuous Damage Mechanics Model for Ductile Fracture. J. Eng. Mat. Techn.107 (1985) 1, p. 83, 10.1115/1.3225775Suche in Google Scholar

18. Lemaitre, J.; Desmorat, R.: Engineering Damage Mechanics – Ductile, Creep, Fatigue and Brittle Failures. Springer, Berlin, Germany, 2005. – ISBN 3-540-21503-4Suche in Google Scholar

19. Herbst, S.; Steinke, K. F.; Maier, H. J.; Milenin, A.; Nürnberger, F.: Determination of heat transfer coefficients for complex spray cooling arrangements. Int. J. Microstruct. Mater. Proper.11 (2016), pp. 229246, 10.1504/IJMMP.2016.079149Suche in Google Scholar

20. Nacke, B.: Ein Verfahren zur numerischen Simulation induktiver Erwärmungsprozesse und dessen technische Anwendung. Dissertation, University Hannover, 1987Suche in Google Scholar

21. Herbst, S.; Aengeneyndt, H.; Maier, H. J.; Nürnberger, F.: Microstructure and mechanical properties of friction welded steel-aluminum hybrid components after T6 heat treatment. Mat. Sci. Eng. A696 (2017), pp. 3341, 10.1016/j.msea.2017.04.052Suche in Google Scholar

22. Rudajevová, A., Buriánek, J.: Determination of thermal diffusivity and thermal conductivity of Fe-Al alloys in the concentration range 22 to 50 at.% Al. J. Phase Equil.22 (2001) 5, pp. 560563, 10.1007/s11669-001-0075-1Suche in Google Scholar

23. Tönshoff, H. K.; Blawit, C.; Mohlfeld, A.; Schmidt, J.; Borbe, C.: Environmental and Economical Aspects of Cutting. I. C. E. M. Meeting 1997, 29.09.-01.10.97, s'Hertogenbosch, NL, 1997Suche in Google Scholar

24. Paulsen, T.; Pecat, O.; Brinksmeier, E.: Influence of different machining conditions on the subsurface properties of drilled TiAl6V4. Procedia CIRP46 (2016), pp. 472475, 10.1016/j.procir.2016.04.047Suche in Google Scholar

25. Denkena, B.; Biermann, D.: Cutting edge geometries. CIRP Annals93 (2014) 2, pp. 631653, 10.1016/j.cirp.2014.05.009Suche in Google Scholar

26. Töller, F.; Löhnert, S.; Wriggers, P.: Internal Thickness Extrapolation. PAMM18 (2018) 1, p. e201800391, 10.1002/pamm.201800391Suche in Google Scholar

Published Online: 2019-04-03
Published in Print: 2019-04-09

© 2019, Carl Hanser Verlag, München

Heruntergeladen am 2.10.2025 von https://www.degruyterbrill.com/document/doi/10.3139/105.110378/html
Button zum nach oben scrollen