Bending fatigue of gear teeth of conventional and isotropic steels
-
C. Temmel
, B. Karlsson and V. Leicht
Abstract
The bending fatigue strength of case hardened pulsator test gear wheels has been investigated for wheels in V2158 (20MnCrS5) and fatigue isotropic 158Q (≈ 20NiMo10) steels. The gear wheels in V2158 were forged either vertically or horizontally, the wheels in 158Q just vertically. Structural anisotropy levels were investigated in the horizontally forged V2158 gears. There was no noteworthy level of bending fatigue anisotropy to detect in the V2158 gears. However, the horizontally forged gears performed some 4% better than the vertically forged ones which may be explained by a somewhat more beneficial orientation and dispersion of sulfide inclusions in the horizontal gears. The fatigue isotropic 158Q steel is, in case-hardened components, obviously not required for isotropy reasons but highly appreciated for its outstanding fatigue performance. With identical heat treatment and surface condition, gears in 158Q outperform V2158 gears by some 23% in bending fatigue strength. This is explained by the material's resistance against internal surface oxidation and, to some extend, by its low inclusion content.
Kurzfassung
Die Biegeschwellfestigkeit von einsatzgehärteten Pulsatorzahnrädern aus V2158 (20MnCrS5) und 158Q (≈ 20NiMo10) wurde untersucht. Zahnräder aus V2158 wurden entweder vertikal oder horizontal geschmiedet, die Zahnräder aus 158Q ausschließlich vertikal. Die strukturelle Anisotropie von Zahnrädern wurde anhand der horizontal geschmiedeten V2158 Zahnräder untersucht. Es wurde keine nennenswerte Anisotropie gemessen, jedoch wiesen die horizontal geschmiedeten Zahnräder 4% höhere Biegeschwellfestigkeiten auf als die vertikal geschmiedeten. Dies kann mit einer wahrscheinlich günstigeren Orientierung und Verteilung der Sulfide in den horizontalen Zahnrädern erklärt werden. Hinsichtlich struktureller Anisotropie besteht offensichtlich kein Bedarf, den ermüdungsisotropen Stahl 158Q einzusetzen. Zahnräder in 158Q Material zeigen jedoch ausgezeichnete Ermüdungseigenschaften, die denen aus V2158-Material um zumindest 23% überlegen sind. Diese hervorragende Biegeschwellfestigkeit kann mit einer wenig ausgeprägten Neigung zur Oberflächenoxidation und teilweise dem geringeren Gehalt an Einschlüssen erklärt werden.
References
1. Přenosil, B.: Mechanische Eigenschaften karbonitrierter Stähle. HTM Härterei-Techn. Mitt.21 (1966) 4, pp. 271–271Search in Google Scholar
2. Přenosil, B.: Effect of Retained Austenite in Carbonitrided Case Structure upon Fatigue Strength. Czech. J. Phys. (1969) B19, pp. 397–397Search in Google Scholar
3. Kirman, I.; Mayer, G.; Strassburg, F. W.: Effects of Ni and the Peripheral Structure on the Fracture Properties of Case-Hardened Steel. HTM Härterei-Techn. Mitt.29 (1974), pp. 88–94Search in Google Scholar
4. Spangenberg, S.; Grosch, J.; Scholtes, B.: Untersuchungen zum Einfluss des Restaustenits auf die Schwingfestigkeit einsatzgehärteter Proben. HTM Z. Werkst. Waermebeh. Fertigung59 (2004), pp. 12–17Search in Google Scholar
5. Krauss, G.: Bending Fatigue of Carburized Steels. Metals Handbook, ASM Int., Materials Park, Ohio/USA, 1996, pp. 680–69010.31399/asm.hb.v19.a0002400Search in Google Scholar
6. Wise, J. P.; Matlock, D. K.; Krauss, G.: Bending Fatigue of Carburized Steels. Heat Treating Progress (2001) Aug/Sep, pp. 33–4110.4271/2000-01-0611Search in Google Scholar
7. Clausen, B.; Hoffmann, F.; Zoch, H.-W.: Beeinflussung der Randschicht durch die Einsatzhärtung. HTM J. Heat Treatm. Mat.63 (2008), pp. 326–336Search in Google Scholar
8. Evanson, K. C.; Krauss, G.; Matlock, D. K.: Surface Oxides and Bending Fatigue in Gas-Carburized SAE 4320 Steels. Proc. 20th ASM Heat Treating Soc. Conf., St. Louis/USA, 2000, pp. 249–256Search in Google Scholar
9. Shaw, B. A.; Aylott, C.; O'Hara, P.; Brimble, K.: The role of residual stress on the fatigue strength of high performance gearing. Int. J. Fatigue25 (2003), pp. 1279–128310.1016/j.ijfatigue.2003.08.014Search in Google Scholar
10. Temmel, C.; Karlsson, B.; Ingesten, N.-G.: Fatigue Anisotropy in Cross-Rolled, Hardened Medium Carbon Steel Resulting from MnS Inclusions. Metall. Mater. Trans.37A (2006), pp. 2995–300710.1007/s11661-006-0181-0Search in Google Scholar
11. Temmel, C.; Karlsson, B.; Ingesten, N.-G.: Fatigue Isotropy in Cross-Rolled, Hardened IQ (Isotropic Quality) Steel. Metall. Mater. Trans.39A (2008), pp. 1132–114410.1007/s11661-008-9467-8Search in Google Scholar
12. Ölund, P.: The IQ-process – the Ovako isotropic quality process. Technical report Ovako Steel AB, Hällefors Tryckeri, Hofors/SE, 2006, pp. 1–7Search in Google Scholar
13. Ölund, P.: Isotropic steel has equal strength in all directions. Adv. Mater. Process.164 (2006) 8, pp. 15–15Search in Google Scholar
14. Ravenshorst, H.; Hejazifar, M.: ER-502904. Volvo Powertrain Corporation, Göteborg, Sweden, unpublished research, 2000Search in Google Scholar
15. Beckmann, S.: Case hardening. Volvo Corporate Standard STD 1094,1, 2005Search in Google Scholar
16. Holmqvist, T.: Cylindrical gears: Surface roughness requirements on tooth flanks. Volvo Corporate Standard STD 5082, 53, 1997Search in Google Scholar
17. Holmqvist, T.: Gears: Deviation and inspection methods for cylindrical gears with involute gear teeth. Volvo Corporate Standard STD 5082, 81, 2007Search in Google Scholar
18. Standard DIN EN ISO 4287: 1998: Geometrical Product Specifications (GPS) – Surface texture: Profile method – Terms, definitions and surface texture parameters (ISO 4287: 1997); German version EN ISO 4287: 1998. Beuth Verlag, Berlin, 1997Search in Google Scholar
19. Dixon, W. J.; Mood, A. M.: A Method for Obtaining and Analyzing Sensitivity Data. J. Amer. Statist. Assoc.43 (1948), pp. 108–126Search in Google Scholar
20. Temmel, C.; Karlsson, B.; Ingesten, N.-G.: Fatigue crack initiation in hardened medium carbon steel due to manganese sulphide inclusion clusters. FFEMS31 (2008), pp. 466–47710.1111/j.1460-2695.2008.01243.xSearch in Google Scholar
21. Parrish, G.: Carburizing: Microstructure and Properties. ASM Int., Materials Park, Ohio/USA, 1999, pp. 84–8910.31399/asm.tb.cmp.9781627083379Search in Google Scholar
© 2009, Carl Hanser Verlag, München
Articles in the same Issue
- Inhalt/Contents
- Inhalt
- Kurzfassungen/Summaries
- Kurzfassungen
- Fachbeiträge/Technical Contributions
- Einsatzhärten vs. Induktionshärten*
- Bending fatigue of gear teeth of conventional and isotropic steels
- Modelling and experimental study of the deformation of steel parts during heating*
- Vorhersage der Randzoneneigenschaften hart gedrehter Stähle
- Sinterbeschichten mit direkt gehärteten, hoch verschleißbeständigen Metall-Matrix-Verbundwerkstoffen – Eine Alternative zum heißisostatischen Pressen*
- Sprühkompaktierte Zusatzwerkstoffe für das Laserstrahlschweißen hochfester Aluminiumwerkstoffe
- SimCarb – Eine leistungsfähige Windows-Expertensoftware für das rechnergestützte Einsatzhärten*
Articles in the same Issue
- Inhalt/Contents
- Inhalt
- Kurzfassungen/Summaries
- Kurzfassungen
- Fachbeiträge/Technical Contributions
- Einsatzhärten vs. Induktionshärten*
- Bending fatigue of gear teeth of conventional and isotropic steels
- Modelling and experimental study of the deformation of steel parts during heating*
- Vorhersage der Randzoneneigenschaften hart gedrehter Stähle
- Sinterbeschichten mit direkt gehärteten, hoch verschleißbeständigen Metall-Matrix-Verbundwerkstoffen – Eine Alternative zum heißisostatischen Pressen*
- Sprühkompaktierte Zusatzwerkstoffe für das Laserstrahlschweißen hochfester Aluminiumwerkstoffe
- SimCarb – Eine leistungsfähige Windows-Expertensoftware für das rechnergestützte Einsatzhärten*