Home Improvement in γ-decalactone production by Yarrowia sp. after genome shuffling
Article
Licensed
Unlicensed Requires Authentication

Improvement in γ-decalactone production by Yarrowia sp. after genome shuffling

  • Yu-Ping Zhao EMAIL logo , Xiao-Qing Mu and Yan Xu
Published/Copyright: April 15, 2014
Become an author with De Gruyter Brill

Abstract

In this study, a modified genome shuffling method was used to improve γ-decalactone (GDL) production of Yarrowia sp. China General Microbiological Culture Collection Center (CGMCC 2.1405). Five UV mutant strains with higher GDL production or shorter fermentation time were selected as the initial strains for genome shuffling. Conditions of protoplast preparation, regeneration, inactivation, fusion, sporulation of recombinant fusants and ascospore isolation were optimized. Four hereditarily stable haploid recombinants with high GDL production were obtained by three rounds of genome shuffling. Among them, a high GDL-producing recombinant, G3-3.21, producing 3.75 g L−1 of GDL in the fermentation medium after 64 h was obtained. This value is 6.54-fold higher than that of the parent strains CGMCC 2.1405, at the peak production shortened by 8 h. Mathematical kinetic models of CGMCC 2.1405 and G3-3.21 were established to well predict the cell growth and GDL production. The cell growth of G3-3.21 was significantly faster than that of CGMCC 2.1405. The product synthesis constant associated with the strain growth of G3-3.21 was higher than that associated with CGMCC 2.1405. Long-chain fatty-acyl-CoA oxidase activities of G3-3.21 were 833 mU mg−1 and 6.83 times higher than that of CGMCC 2.1405.

[1] Aguedo, M., Ly, M. H., Belo, I., Teixeira, J. A., Belin, J. M.,& Waché, Y. (2004a). The use of enzymes and microorganisms for the production of aroma compounds from lipids. Food Technology and Biotechnology, 42, 327–336. Search in Google Scholar

[2] Aguedo, M., Waché, Y., Coste, F., Husson, F.,& Belin, J. M. (2004b). Impact of surfactants on the biotransformation of methyl ricinoleate into γ-decalactone by Yarrowia lipolytica. Journal of Molecular Catalysis B: Enzymatic, 29, 31–36. DOI: 10.1016/j.molcatb.2003.11.018. http://dx.doi.org/10.1016/j.molcatb.2003.11.01810.1016/j.molcatb.2003.11.018Search in Google Scholar

[3] Bajwa, P. K., Pinel, D., Martin, V. J. J., Trevors, J. T.,& Lee, H. (2010). Strain improvement of the pentose-fermenting yeast Pichia stipitis by genome shuffling. Journal of Microbiological Methods, 81, 179–186. DOI: 10.1016/j.mimet.2010.03.009. http://dx.doi.org/10.1016/j.mimet.2010.03.00910.1016/j.mimet.2010.03.009Search in Google Scholar

[4] Beney, L., Marechal, P.,& Gervais, P. (2001). Coupling effects of osmotic pressure and temperature on the viability of Saccharomyces cerevisiae. Applied Microbiology and Biotechnology, 56, 513–516. DOI: 10.1007/s002530100619. http://dx.doi.org/10.1007/s00253010061910.1007/s002530100619Search in Google Scholar

[5] Blin-Perrin, C., Molle, D., Dufosse, L., Le-Quere, J. L., Viel, C., Mauvais, G.,& Feron, G. (2000). Metabolism of ricinoleic acid into γ-decalactone: β-oxidation and long chain acyl intermediates of ricinoleic acid in the genus Sporidiobolus sp. FEMS Microbiology Letters, 188, 69–74. DOI: 10.1111/j.1574-6968.2000.tb09170.x. 10.1111/j.1574-6968.2000.tb09170.xSearch in Google Scholar

[6] Bradford, M. M. (1976). A rapid and sensitive method for the quantification of microgram quantities of proteins using the principle of protein-dye bingidng. Analytical Biochemistry, 72, 248–254. DOI: 10.1016/0003-2697(76)90527-3. http://dx.doi.org/10.1016/0003-2697(76)90527-310.1016/0003-2697(76)90527-3Search in Google Scholar

[7] Christoph, N., & Drawert, F. (1985). Olfactory thresholds of odour stimuli determined by gas chromatographic sniffing technique; structure-activity relationships. In R. G. Berger, & F. Drawert (Eds.), Topics in flavour research: Proceedings of the international conference (pp. 427–441). Berlin, Germany: Cornell University Press. Search in Google Scholar

[8] Dufossé, L., Feron, G., Mauvais, G., Bonnarme, P., Durand, A.,& Spinnler, H. E. (1998). Production of γ-decalactone and 4-hydroxy-decanoic acid in the genus Sporidiobolus. Journal of Fermentation and Bioengineering, 86, 169–173. DOI: 10.1016/s0922-338x(98)80056-1. http://dx.doi.org/10.1016/S0922-338X(98)80056-110.1016/S0922-338X(98)80056-1Search in Google Scholar

[9] Feron, G., Bonnarme, P.,& Durand, A. (1996). Prospects for the microbial production of food flavours. Trends in Food Science & Technology, 7, 285–293. DOI: 10.1016/0924-2244(96)10032-7. http://dx.doi.org/10.1016/0924-2244(96)10032-710.1016/0924-2244(96)10032-7Search in Google Scholar

[10] Feron, G., Blin-Perrin, C., Krasniewski, I., Mauvais, G.,& Lherminier, J. (2005). Metabolism of fatty acid in yeast: Characterisation of β-oxidation and ultrastructural changes in the genus Sporidiobolus sp. cultivated on ricinoleic acid methyl ester. FEMS Microbiology Letters, 250, 63–69. DOI: 10.1016/j.femsle.2005.06.045. http://dx.doi.org/10.1016/j.femsle.2005.06.04510.1016/j.femsle.2005.06.045Search in Google Scholar PubMed

[11] Gao, X. F., Zhao, H., Zhang, G. H., He, K.,& Jin, Y. L. (2012). Genome shuffling of Clostridium acetobutylicum CICC 8012 for improved production of acetone-butanol-ethanol (ABE). Current Microbiology, 65, 128–132. DOI: 10.1007/s00284-012-0134-3. http://dx.doi.org/10.1007/s00284-012-0134-310.1007/s00284-012-0134-3Search in Google Scholar PubMed

[12] Gatfield, I., & Rabenhorst, J. (1999). US Patent 6451565. Washington, D.C., USA: U.S. Patent and Trademark Office. Search in Google Scholar

[13] Gomes, N., Braga, A., Teixeira, J. A.,& Belo, I. (2013). Impact of lipase-mediated hydrolysis of castor oil on Γ-decalactone production by Yarrowia lipolytica. Journal of the American Oil Chemists’ Society, 90, 1131–1137. DOI: 10.1007/s11746-013-2231-2. http://dx.doi.org/10.1007/s11746-013-2231-210.1007/s11746-013-2231-2Search in Google Scholar

[14] Gong, J. X., Zheng, H. J., Wu, Z. J., Chen, T.,& Zhao, X. M. (2009). Genome shuffling: Progress and applications for phenotype improvement. Biotechnology Advances, 27, 996–1005. DOI: 10.1016/j.biotechadv.2009.05.016. http://dx.doi.org/10.1016/j.biotechadv.2009.05.01610.1016/j.biotechadv.2009.05.016Search in Google Scholar

[15] Hida, H., Yamada, T.,& Yamada, Y. (2007). Genome shuffling of Streptomyces sp. U121 for improved production of hydroxycitric acid. Applied Microbiology and Biotechnology, 73, 1387–1393. DOI: 10.1007/s00253-006-0613-1. http://dx.doi.org/10.1007/s00253-006-0613-110.1007/s00253-006-0613-1Search in Google Scholar

[16] Hurtado, C. A.,& Rachubinski, R. A. (2002). Isolation and characterization of YlBEM1, a gene required for cell polarization and differentiation in the dimorphic yeast Yarrowia lipolytica. Eukaryotic Cell, 1, 526–537. DOI: 10.1128/ec.1.4.526-537.2002. http://dx.doi.org/10.1128/EC.1.4.526-537.200210.1128/EC.1.4.526-537.2002Search in Google Scholar

[17] Iacazio, G., Martini, D., Faure, B.,& N’Guyen, M. H. (2002). Isolation and characterisation of 8-hydroxy-3Z,5Ztetradecadienoic acid, a putative intermediate in Pichia guilliermondii γ-decalactone biosynthesis from ricinoleic acid. FEMS Microbiology Letters, 209, 57–62. DOI: 10.1111/j.1574-6968.2002.tb11109.x. http://dx.doi.org/10.1111/j.1574-6968.2002.tb11109.x10.1111/j.1574-6968.2002.tb11109.xSearch in Google Scholar

[18] Jian, Z. G., & Wang, Z. X. (1994). Laboratory manual for industrial microbiology. Beijing, China: Light Industry Press. Search in Google Scholar

[19] Kang, J. X., Chen, X. J., Chen, W. R., Li, M. S., Fang, Y., Li, D. S., Ren, Y. Z.,& Liu, D. Q. (2011). Enhanced production of pullulan in Aureobasidium pullulans by a new process of genome shuffling. Process Biochemistry, 46, 792–795. DOI: 10.1016/j.procbio.2010.11.004. http://dx.doi.org/10.1016/j.procbio.2010.11.00410.1016/j.procbio.2010.11.004Search in Google Scholar

[20] Lee, S. L.,& Chou, C. C. (1994). Growth and production of Γ-decalactone and cis-6-dodecen-4-olide by Sporobolomyces odorus in the presence of fatty acids and oils. Journal of Fermentation and Bioengineering, 78, 114–116. DOI: 10.1016/0922-338x(94)90191-0. http://dx.doi.org/10.1016/0922-338X(94)90191-010.1016/0922-338X(94)90191-0Search in Google Scholar

[21] Lee, S. L., Cheng, H. Y., Chen, W. C.,& Chou, C. C. (1999). Effect of physical factors on the production of Γ-decalactone by immobilized cells of Sporidiobolus salmonicolor. Process Biochemistry, 34, 845–850. DOI: 10.1016/s0032-9592(99)00010-2. http://dx.doi.org/10.1016/S0032-9592(99)00010-210.1016/S0032-9592(99)00010-2Search in Google Scholar

[22] Lin, S. J., Lee, S. L.,& Chou, C. C. (1996). Effects of various fatty acid components of castor oil on the growth and production of Γ-decalactone by Sporobolomyces odorus. Journal of Fermentation and Bioengineering, 82, 42–45. DOI: 10.1016/0922-338x(96)89452-9. http://dx.doi.org/10.1016/0922-338X(96)89452-910.1016/0922-338X(96)89452-9Search in Google Scholar

[23] Lv, X. A., Jin, Y. Y., Li, Y. D., Zhang, H.,& Liang, X. L. (2013). Genome shuffling of Streptomyces viridochromogenes for improved production of avilamycin. Applied Microbiology and Biotechnology, 97, 641–648. DOI: 10.1007/s00253-012-4322-7. http://dx.doi.org/10.1007/s00253-012-4322-710.1007/s00253-012-4322-7Search in Google Scholar PubMed

[24] Pagot, Y., Le Clainche, A., Nicaud, J. M., Wache, Y.,& Belin, J. M. (1998). Peroxisomal β-oxidation activities and Γ-decalactone production by the yeast Yarrowia lipolytica. Applied Microbiology and Biotechnology, 49, 295–300. DOI: 10.1007/s002530051172. http://dx.doi.org/10.1007/s00253005117210.1007/s002530051172Search in Google Scholar PubMed

[25] Pinches, A.,& Pallent, L. J. (1986). Rate and yield relationships in the production of xanthan gum by batch fermentations using complex and chemically defined growth media. Biotechnology and Bioengineering, 28, 1484–1496. DOI: 10.1002/bit.260281006. http://dx.doi.org/10.1002/bit.26028100610.1002/bit.260281006Search in Google Scholar

[26] Su, C., Chen, H.,& Pan, X. H. (2010). Study of a strain with high yielding of gamma-decalactone mutated by combinated mutagenesis. Food Science Biotechnology, 10, 20–23. Search in Google Scholar

[27] Tahara, S., Fujiwara, K.,& Mizutani, J. (1973). Neutral constituents of volatiles in cultured medium of Sporobolomyces odorus. Agricultural and Biological Chemistry, 37, 2855–2861. http://dx.doi.org/10.1271/bbb1961.37.285510.1271/bbb1961.37.2855Search in Google Scholar

[28] Waché, Y., Pagot, Y., Nicaud, J. M.,& Belin, J. M. (1998). Acyl-CoA oxidase, a key step for lactone production by Yarrowia lipolytica. Journal of Molecular Catalysis B: Enzymatic, 5, 165–169. DOI: 10.1016/s1381-1177(98)00027-7. http://dx.doi.org/10.1016/S1381-1177(98)00027-710.1016/S1381-1177(98)00027-7Search in Google Scholar

[29] Waché, Y., Aguedo, M., Choquet, A., Gatfield, I. L., Nicaud, J. M.,& Belin, J. M. (2001). Role of beta-oxidation enzymes in gamma-decalactone production by the yeast Yarrowia lipolytica. Applied and Environment Microbiology, 67, 5700–5704. DOI: 10.1128/aem.67.12.5700-5704.2001. http://dx.doi.org/10.1128/AEM.67.12.5700-5704.200110.1128/AEM.67.12.5700-5704.2001Search in Google Scholar PubMed PubMed Central

[30] Waché, Y., Husson, F., Feron, G.,& Belin, J. M. (2006). Yeast as an efficient biocatalyst for the production of lipid-derived flavours and fragrances. Antonie van Leeuwenhoek, 89, 405–416. DOI: 10.1007/s10482-005-9049-3. http://dx.doi.org/10.1007/s10482-005-9049-310.1007/s10482-005-9049-3Search in Google Scholar PubMed

[31] Weiss, R. M.,& Ollis, D. F. (1980). Extracellular microbial polysaccharides. I. Substrate, biomass, and product kinetic equations for batch xanthan gum fermentation. Biotechnology and Bioengineering, 22, 859–873. DOI: 10.1002/bit.260220410. http://dx.doi.org/10.1002/bit.26022041010.1002/bit.260220410Search in Google Scholar

[32] Yu, L., Pei, X. L., Lei, T., Wang, Y. H.,& Feng, Y. (2008). Genome shuffling enhanced L-lactic acid production by improving glucose tolerance of Lactobacillus rhamnosus. Journal of Biotechnology, 134, 154–159. DOI: 10.1016/j.jbiotec.2008.01.008. http://dx.doi.org/10.1016/j.jbiotec.2008.01.00810.1016/j.jbiotec.2008.01.008Search in Google Scholar PubMed

[33] Zhang, Y. X., Perry, K., Vinci, V. A., Powell, K., Stemmer, W. P. C.,& del Cardayré, S. B. (2002). Genome shuffling leads to rapid phenotypic improvement in bacteria. Nature, 415, 644–646. DOI: 10.1038/415644a. http://dx.doi.org/10.1038/415644a10.1038/415644aSearch in Google Scholar PubMed

[34] Zhang, Y., Liu, J. Z., Huang, J. S.,& Mao, Z. W. (2010). Genome shuffling of Propionibacterium shermanii for improving vitamin B12 production and comparative proteome analysis. Journal of Biotechnology, 148, 139–143. DOI: 10.1016/j.jbiotec.2010.05.008. http://dx.doi.org/10.1016/j.jbiotec.2010.05.00810.1016/j.jbiotec.2010.05.008Search in Google Scholar PubMed

[35] Zheng, D. Q., Wu, X. C., Tao, X. L., Wang, P. M., Li, P., Chi, X. Q., Li, Y. D., Yan, Q. F.,& Zhao, Y. H. (2011). Screening and construction of Saccharomyces cerevisiae strains with improved multi-tolerance and bioethanol fermentation performance. Bioresource Technology, 102, 3020–3027. DOI: 10.1016/j.biortech.2010.09.122. http://dx.doi.org/10.1016/j.biortech.2010.09.12210.1016/j.biortech.2010.09.122Search in Google Scholar PubMed

[36] Zheng, P., Zhang, K. K., Yan, Q., Xu, Y.,& Sun, Z. H. (2013). Enhanced succinic acid production by Actinobacillus succinogenes after genome shuffling. Journal of Industrial Microbiology & Biotechnology, 40, 831–840. DOI: 10.1007/s10295-013-1283-5. http://dx.doi.org/10.1007/s10295-013-1283-510.1007/s10295-013-1283-5Search in Google Scholar PubMed

[37] Zhong, H., Zhao, Y., Li, W.,& Li, C. (2011). Construction of high yield γ-decalactone strains by protoplast fusion technique. China Brewing, 230, 102–105. Search in Google Scholar

Published Online: 2014-4-15
Published in Print: 2014-8-1

© 2014 Institute of Chemistry, Slovak Academy of Sciences

Articles in the same Issue

  1. Recent advances in application of liquid-based micro-extraction: A review
  2. Determination of nitrites and nitrates in drinking water using capillary electrophoresis
  3. Comparison of digestion methods for determination of total phosphorus in river sediments
  4. Interdisciplinary study on pottery experimentally impregnated with wine
  5. Improvement in γ-decalactone production by Yarrowia sp. after genome shuffling
  6. Development of an effective extraction process for coenzyme Q10 from Artemia
  7. Effect of anions on the structure and catalytic properties of a La-doped Cu-Mn catalyst in the water-gas shift reaction
  8. Effect of apple pomace powder addition on farinographic properties of wheat dough and biscuits quality
  9. Influence of caffeine and temperature on corrosion-resistance of CoCrMo alloy
  10. Cetyltrimethylammonium bromide- and ethylene glycol-assisted preparation of mono-dispersed indium oxide nanoparticles using hydrothermal method
  11. Sol-gel synthesis, characterisation, and photocatalytic activity of porous spinel Co3O4 nanosheets
  12. Solvent-free synthesis of β-enamino ketones and esters catalysed by recyclable iron(III) triflate
  13. Potassium phthalimide-catalysed one-pot multi-component reaction for efficient synthesis of amino-benzochromenes in aqueous media
  14. Organocatalytic SOMO reactions of copper(I)-acetylide and alkylindium compounds with aldehydes
  15. Molecular modelling and quantitative structure-activity relationship studies of anatoxin-a and epibatidine derivatives with affinity to rodent nAChR receptors
  16. Efficient one-pot synthesis of 2-hydroxyethyl per-O-acetyl glycosides
  17. Properties of singlet- and triplet-excited states of hemicyanine dyes
Downloaded on 27.11.2025 from https://www.degruyterbrill.com/document/doi/10.2478/s11696-014-0551-9/pdf
Scroll to top button