Abstract
Anatoxin-a and epibatidine are natural toxins with a high affinity to nicotinic acetylcholine receptors (nAChR). Nicotinic ligands have the potential to become novel therapeutic agents for various cognitive disorders such as Alzheimer’s and Parkinson’s diseases. The determination of the physicochemical and biological properties of anatoxin-a and epibatidine derivatives is important because these might lead to the development of new cholinergic therapeutic agents. To study these features, the toxins and a set of their derivatives were subjected to a molecular modelling study and QSAR analysis. The structural analyses indicated that the geometric and steric features are important determinants of the compound’s activities. The descriptors selected for the QSAR model also highlighted the roles of the geometric and steric features, together with the importance of electronic features.
[1] Abreu, R. M. V., Ferreira, C. F. R. I., & Queiroz, M. J. R. P. (2009). QSAR model for predicting radical scavenging activity of di(hetero)arylamines derivatives of benzo[b]thiophenes. European Journal of Medicinal Chemistry, 44, 1952–1958. DOI: 10.1016/j.ejmech.2008.11.011. http://dx.doi.org/10.1016/j.ejmech.2008.11.01110.1016/j.ejmech.2008.11.011Search in Google Scholar
[2] Andouze, K., Nielsen, E. Ø., Olsen, G. M., Ahring, P., Jørgensen, T. D., Peters, D., Liljefors, T., & Balle, T. (2006). New ligands with affinity for the α4β2 subytpe of nicotinic acetylcholine receptors. Synthesis, receptor binding and 3DQSAR modeling. Journal of Medicinal Chemistry, 49, 3159–3171. DOI: 10.1021/jm058058h. http://dx.doi.org/10.1021/jm058058h10.1021/jm058058hSearch in Google Scholar
[3] Cassels, B. K., Bermudez, I., Dajas, F., Abin-Carriquiry, J. A., & Wonnacott, S. (2005). From ligand design to therapeutic efficacy: The challenge for nicotinic receptor research. Drug Discovery Today, 10, 1657–1665. DOI: 10.1016/s1359-6446(05)03665-2. http://dx.doi.org/10.1016/S1359-6446(05)03665-210.1016/S1359-6446(05)03665-2Search in Google Scholar
[4] Damaj, M. I., Creasy, K. R., Grove, A. D., Rosecrans, J. A., & Martin, B. R. (1994). Pharmacological effects of epibatidine optical enantiomers. Brain Research, 664, 34–40. DOI: 10.1016/0006-8993(94)91950-x. http://dx.doi.org/10.1016/0006-8993(94)91950-X10.1016/0006-8993(94)91950-XSearch in Google Scholar
[5] de Melo, E. B. (2012). A new quantitative structure-property relationship model to predict bioconcentration factors of polychlorinated biphenyls (PCBs) in fishes using E-state index and topological descriptors. Ecotoxicology and Environmental Safety, 75, 213–222. DOI: 10.1016/j.ecoenv.2011.08.026. http://dx.doi.org/10.1016/j.ecoenv.2011.08.02610.1016/j.ecoenv.2011.08.026Search in Google Scholar PubMed
[6] de Melo, E. B., & Ferreira, M. M. C. (2012). Four-dimensional structure-activity relationship model to predict HIV-1 integrase strand transfer inhibition using LQTA-QSAR methodology. Journal of Chemical Information and Modeling, 52, 1722–1732. DOI: 10.1021/ci300039a. http://dx.doi.org/10.1021/ci300039a10.1021/ci300039aSearch in Google Scholar PubMed
[7] Devlin, J. P., Edwards, O. E., Gorham, P. R., Hunter, N. R., Pike, R. K., & Stavric, B. (1977). Anatoxin-a, a toxic alkaloid from Anabaena flos-aquae NRC-44h. Canadian Journal of Chemistry, 55, 1367–1371. DOI: 10.1139/v77-189. http://dx.doi.org/10.1139/v77-18910.1139/v77-189Search in Google Scholar
[8] Eriksson, L., Jaworska, J., Worth, A. P., Cronin, M. T. D., McDowell, R. M., & Gramatica, P. (2003). Methods for reliability and uncertainty assessment and for applicability evaluations of classification- and regression-based QSARs. Environmental Health Perspectives, 111, 1361–1375. DOI: 10.1289/ehp.5758. http://dx.doi.org/10.1289/ehp.575810.1289/ehp.5758Search in Google Scholar PubMed PubMed Central
[9] Ferreira, M. M. C. (2002). Multivariate QSAR. Journal of the Brazilian Chemical Society, 13, 742–753. DOI: 10.1590/s0103-50532002000600004. 10.1590/S0103-50532002000600004Search in Google Scholar
[10] Gaudio, A. C., & Zandonade, E. (2001). Proposição, validação e analise dos modelos que correlacionam estrutura quimica e atividade biologica. Quimica Nova, 24, 658.671. DOI: 10.1590/s0100-40422001000500013. (in Portuguese) http://dx.doi.org/10.1590/S0100-4042200100050001310.1590/S0100-40422001000500013Search in Google Scholar
[11] Gohlke, H., Schwarz, S., Gündisch, D., Tilotta, M. C., Weber, A., Wegge, T., & Seitz, G. (2003). 3D QSAR analyses-guided rational design of novel ligands for the (α4)2(β2)3 nicotinic acetylcholine receptor. Journal of Medicinal Chemistry, 46, 2031.2048. DOI: 10.1021/jm020859m. http://dx.doi.org/10.1021/jm020859m10.1021/jm020859mSearch in Google Scholar
[12] Golbraikh, A., & Tropsha, A. (2002). Beware of q 2! Journal of Molecular Graphics and Modelling, 20, 269–276. DOI: 10.1016/s1093-3263(01)00123-1. http://dx.doi.org/10.1016/S1093-3263(01)00123-110.1016/S1093-3263(01)00123-1Search in Google Scholar
[13] Hernández, N., Kiralj, R., Ferreira, M. M. C., & Talavera, I. (2009). Critical comparative analysis, validation and interpretation of SVM and PLS regression models in a QSAR study on HIV-1 protease inhibitors. Chemometrics and Intelligent Laboratory Systems, 98, 65–77. DOI: 10.1016/j.chemolab.2009.04.012. http://dx.doi.org/10.1016/j.chemolab.2009.04.01210.1016/j.chemolab.2009.04.012Search in Google Scholar
[14] Infometrix (2007). Pirouette 4 [computer software]. Bothell, WA, USA: Infometrix. Search in Google Scholar
[15] Karig, G., Large, J.M., Sharples, C. G. V., Sutherland, A., Gallagher, T., & Wonnacott, S. (2003). Synthesis and nicotinic binding of novel phenyl derivatives of UB-165. Identifying factors associated with α7 selectivity. Bioorganic & Medicinal Chemistry Letters, 13, 2825–2828. DOI: 10.1016/s0960-894x(03)00594-8. http://dx.doi.org/10.1016/S0960-894X(03)00594-810.1016/S0960-894X(03)00594-8Search in Google Scholar
[16] Katritzky, A. R., Petrukhin, R., Tatham, D., Basak, S., Benfenatim, E., Karelson, M., & Maran, U. (2001). Interpretation of quantitative structure-property and -activity relationships. Journal of Chemical Information and Modeling, 41, 679–685. DOI: 10.1021/ci000134w. http://dx.doi.org/10.1021/ci000134w10.1021/ci000134wSearch in Google Scholar PubMed
[17] Kiralj, R., & Ferreira, M. M. C. (2009). Basic validation procedures for regression models in QSAR and QSPR studies: Theory and application. Journal of Brazilian Chemical Society, 20, 770–787. DOI: 10.1590/s0103-50532009000400021. http://dx.doi.org/10.1590/S0103-5053200900040002110.1590/S0103-50532009000400021Search in Google Scholar
[18] Kubinyi, H., Hamprecht, F. A., & Mietzner, T. (1998). Three-dimensional quantitative similarity-activity relationships (3D QSAR) from SEAL similarity matrices. Journal of Medicinal Chemistry, 41, 2553–2564. DOI: 10.1021/jm970732a. http://dx.doi.org/10.1021/jm970732a10.1021/jm970732aSearch in Google Scholar PubMed
[19] LeSage, M. G., Shelley, D., Ross, J. T., Carroll, F. I., & Corrigall, W. A. (2009). Effects of the nicotinic receptor partial agonists varenicline and cytisine on the discriminative stimulus effects of nicotine in rats. Pharmacology Biochemistry and Behaviour, 91, 461–467. DOI: 10.1016/j.pbb.2008.08.024. http://dx.doi.org/10.1016/j.pbb.2008.08.02410.1016/j.pbb.2008.08.024Search in Google Scholar PubMed PubMed Central
[20] Liu, P. X:, & Long, W. (2009). Current mathematical methods used in QSAR/QSPR studies. International Journal of Molecular Sciences, 10, 1978–1998. DOI: 10.3390/ijms10051978. http://dx.doi.org/10.3390/ijms1005197810.3390/ijms10051978Search in Google Scholar PubMed PubMed Central
[21] Luan, F., Melo, A., Borges, F., & Cordeiro, M. N. D. S. (2011). Affinity prediction on A3 adenosine receptor antagonists: The chemometric approach. Bioorganic & Medicinal Chemistry, 19, 6853–6859. DOI: 10.1016/j.bmc.2011.09.032. http://dx.doi.org/10.1016/j.bmc.2011.09.03210.1016/j.bmc.2011.09.032Search in Google Scholar PubMed
[22] Martins, J. P. A., & Ferreira, M. M. C. (2013). QSAR modeling: A new open source computational package to generate and validate QSAR models. Quimica Nova, 36, 554–560. DOI: 10.1590/s0100-40422013000400013. http://dx.doi.org/10.1590/S0100-4042201300040001310.1590/S0100-40422013000400013Search in Google Scholar
[23] Melagraki, G., Afantitis, A., Sarimveis, H., Koutentis, P. A., Markopoulos, J., & Igglessi-Markopoulou, O. (2007). Optimization of biaryl piperidine and 4-amino-2-biarylurea MCH1 receptor antagonists using QSAR modeling, classification techniques and virtual screening. Journal of Computer-Aided Molecular Design, 21, 251–267. DOI: 10.1007/s10822-007-9112-4. http://dx.doi.org/10.1007/s10822-007-9112-410.1007/s10822-007-9112-4Search in Google Scholar
[24] Molloy, L., Wonnacott, S., Gallagher, T., Brough, P. A., & Livett, B. G. (1995). Anatoxin-a is a potent agonist of the nicotinic acetylcholine receptor of bovine adrenal chromaffin cells. European Journal of Pharmacology: Molecular Pharmacology, 289, 447–453. DOI: 10.1016/0922-4106(95)90153-1. http://dx.doi.org/10.1016/0922-4106(95)90153-110.1016/0922-4106(95)90153-1Search in Google Scholar
[25] Molfetta, F. A., Bruni, A. T., Rosseli, F. P., & da Silva, A. B. F. (2007). A partial least squares and principal component regression study of quinone compounds with trypanocidal activity. Structural Chemistry, 18, 49–57. DOI: 10.1007/s11224-006-9120-3. http://dx.doi.org/10.1007/s11224-006-9120-310.1007/s11224-006-9120-3Search in Google Scholar
[26] Nicolotti, O., Pellegrini-Calace, M., Altomare, C., Carotti, A., Carrieri, A., & Sanz, F. (2002). Ligands of neuronal nicotinic acetylcholine receptor (nAChR): Inferences from the Hansch and 3-D quantitative structure-activity relationship (QSAR) models. Current Medicinal Chemisty, 9, 1–29. DOI: 10.2174/0929867023371463. http://dx.doi.org/10.2174/092986702337146310.2174/0929867023371463Search in Google Scholar PubMed
[27] OECD (2007). Guidance document on the validation of (Q)SAR models. Retrieved November 20, 2012, from http://search. oecd.org/officialdocuments/displaydocumentpdf/?doclanguage=en&cote=env/jm/mono(2007)2 Search in Google Scholar
[28] Ojha, P. K., Mitra, I., Das, R. N., & Roy, K. (2011). Further exploring r m2 metrics for validation of QSPR models. Chemometrics and Intelligent Laboratory Systems, 107, 194–205. DOI: 10.1016/j.chemolab.2011.03.011. http://dx.doi.org/10.1016/j.chemolab.2011.03.01110.1016/j.chemolab.2011.03.011Search in Google Scholar
[29] Ojha, P. K., & Roy, K. (2011). Comparative QSARs for antimalarial endochins: Importance of descriptor-thinning and noise reduction prior to feature selection. Chemometrics and Intelligent Laboratory Systems, 109, 146–161. DOI: 10.1016/j.chemolab.2011.08.007. http://dx.doi.org/10.1016/j.chemolab.2011.08.00710.1016/j.chemolab.2011.08.007Search in Google Scholar
[30] Osswald, J., Rellan, S., Gago, A., & Vasconcelos, V. (2007). Toxicology and detection methods of the alkaloid neurotoxin produced by cyanobacteria, anatoxin-a. Environment International, 33, 1070–1089. DOI: 10.1016/j.envint.2007.06.003. http://dx.doi.org/10.1016/j.envint.2007.06.00310.1016/j.envint.2007.06.003Search in Google Scholar PubMed
[31] Papa, E., Dearden, J. C., & Gramatica, P. (2007). Linear QSAR regression models for the prediction of bioconcentration factors by physicochemical properties and structural theoretical molecular descriptors. Chemosphere, 67, 351–358. DOI: 10.1016/j.chemosphere.2006.09.079. http://dx.doi.org/10.1016/j.chemosphere.2006.09.07910.1016/j.chemosphere.2006.09.079Search in Google Scholar PubMed
[32] Papke, R. L. (2010). α4β2 Nicotinic acetylcholine receptors, willing if able. British Journal of Pharmacology, 160, 1903–1905. DOI: 10.1111/j.1476-5381.2010.00868.x. http://dx.doi.org/10.1111/j.1476-5381.2010.00868.x10.1111/j.1476-5381.2010.00868.xSearch in Google Scholar PubMed PubMed Central
[33] Pérez, X. A., & Quik, M. (2011). Focus on α4β2* and α6β2* nAChRs for Parkinson’s disease therapeutics. Molecular and Cellular Pharmacology, 3, 1–6. Search in Google Scholar
[34] Rapier, C., Lunt, G. G., & Wonnacott, S. (1990). Nicotinic modulation of [3H]dopamine release from striatal synaptosomes: Pharmacological characterisation. Journal of Neurochemistry, 54, 937–945. DOI: 10.1111/j.1471-4159.1990.tb02341.x. http://dx.doi.org/10.1111/j.1471-4159.1990.tb02341.x10.1111/j.1471-4159.1990.tb02341.xSearch in Google Scholar PubMed
[35] Ribeiro, F. A. L., & Ferreira, M. M. C. (2003). QSPR models of boiling point, octanol.water partition coefficient and retention time index of polycyclic aromatic hydrocarbons. Jour nal of Molecular Structure: Theochem, 663, 109–126. DOI: 10.1016/j.theochem.2003.08.107. http://dx.doi.org/10.1016/j.theochem.2003.08.10710.1016/j.theochem.2003.08.107Search in Google Scholar
[36] Sharpless, C. G. V., Karig, G., Simpson, G. L., Spencer, J. A., Wright, E., Millar, N. S., Wonnacott, S., & Gallagher, T. (2002). Synthesis and pharmacological characterization of novel analogues of the nicotinic acetylcholine receptor agonist (±)-UB-165. Journal of Medicinal Chemistry, 45, 3235–3245. DOI: 10.1021/jm020814l. http://dx.doi.org/10.1021/jm020814l10.1021/jm020814lSearch in Google Scholar PubMed
[37] Silla, J. M., Nunes, C. A., Cormanich, R. A., Guerreiro, M. C., Ramalho, T. C., & Freitas, M. P. (2011). MIA-QSPR and effect of variable selection on the modeling of kinetic parameters related to activities of modified peptides against dengue type 2. Chemometrics and Intelligent Laboratory Systens, 108, 146–149. DOI: 10.1016/j.chemolab.2011.06.009. http://dx.doi.org/10.1016/j.chemolab.2011.06.00910.1016/j.chemolab.2011.06.009Search in Google Scholar
[38] Spande, T. F., Garraffo, H. M., Edwards, M. W., Yeh, H. J. C., Pannell, L., & Daly, J. W. (1992). Epibatidine: A novel (chloropyridyl)azabicycloheptane with potent analgesic activity from an Ecuadoran poison frog. Journal of the American Chemical Society, 114, 3475–3478. DOI: 10.1021/ja00035a048. http://dx.doi.org/10.1021/ja00035a04810.1021/ja00035a048Search in Google Scholar
[39] Stanton, M. L. (2003). Interacting guilds: Moving beyond the pairwise perspective on mutualisms. The American Naturalist, 162, S10–S23. DOI: 10.1086/378646. http://dx.doi.org/10.1086/37864610.1086/378646Search in Google Scholar PubMed
[40] Talete (2010). Dragon 6.0 [computer software]. Milano, Italy: Talete. Search in Google Scholar
[41] Talete (2011). Dragon 6.0 [computer software], users guide. Milano, Italy: Talete. Search in Google Scholar
[42] Teofilo, R. F., Martins, J. P. A., & Ferreira, M. M C. (2009). Sorting variables by using informative vectors as a strategy for feature selection in multivariate regression. Journal of Chemometrics, 23, 32–48. DOI: 10.1002/cem.1192. http://dx.doi.org/10.1002/cem.119210.1002/cem.1192Search in Google Scholar
[43] Thomas, P., Stephens, M., Wilkie, G., Amar, M., Lunt, G. G., Whiting, P., Gallagher, T., Pereira, E., Alkodon, M., Albuquerque, E. X., & Wonnacott, S. (1993). (+)-Anatoxin-a is a potent agonist at neuronal nicotinic acetylcholine receptors. Journal of Neurochemistry, 60, 2308–2311. DOI: 10.1111/j.1471-4159.1993.tb03519.x. http://dx.doi.org/10.1111/j.1471-4159.1993.tb03519.x10.1111/j.1471-4159.1993.tb03519.xSearch in Google Scholar PubMed
[44] Todeschini, R. C., & Consonni, V. (2009). Molecular descriptors for chemoinformatics (2th ed.). Weinheim, Germany: Wiley. http://dx.doi.org/10.1002/978352762876610.1002/9783527628766Search in Google Scholar
[45] Tonder, J. E., & Olesen, P. H. (2001). Agonists at the α4β2 nicotinic acetylcholine receptors relationships and molecular modeling. Current Medicinal Chemistry, 8, 651.674. DOI: 10.2174/0929867013373165. http://dx.doi.org/10.2174/092986701337316510.2174/0929867013373165Search in Google Scholar PubMed
[46] Tropsha, A. (2010). Best practices for QSAR model development, validation and exploitation. Molecular Informatics, 29, 476–488. DOI: 10.1002/minf.201000061. http://dx.doi.org/10.1002/minf.20100006110.1002/minf.201000061Search in Google Scholar
[47] van Drie, J. (2003). Pharmacophore discovery — lessons learned. Current Pharmaceutical Design, 9, 1649–1664. DOI: 10.2174/1381612033454568. http://dx.doi.org/10.2174/138161203345456810.2174/1381612033454568Search in Google Scholar
[48] Wold, S., Eriksson, L., & Clementi, S. (1995). Validation tools. In H. van de Waterbeemd (Ed.), Chemometric methods in molecular design (pp. 309–318). Weinheim, Germany: Wiley. DOI: 10.1002/9783527615452.ch5. http://dx.doi.org/10.1002/9783527615452.ch510.1002/9783527615452.ch5Search in Google Scholar
[49] Wold, S., Sjöström, M., & Eriksson, L. (2001). PLS-regression: A basic tool of chemometrics. Chemometrics and Intelligent Laboratory Systems, 58, 109–130. DOI: 10.1016/s0169-7439(01)00155-1. http://dx.doi.org/10.1016/S0169-7439(01)00155-110.1016/S0169-7439(01)00155-1Search in Google Scholar
[50] Wonnacott, S., Jackman, S., Swanson, K. L., Rapoport, H., & Albuquerque, E. X. (1991). Nicotinic pharmacology of anatoxin analogs. II. Side chain structure-activity relationships at neuronal nicotinic ligand binding sites. Journal of Pharmacology and Experimental Therapeutics, 259, 387–391. Search in Google Scholar
[51] Wonnacott, S., Swanson, K. L., Albuquerque, E. X., Huby, N. J. S., Thompson, P., & Gallagher, T. (1992). Homoanatoxin: A potent analogue of anatoxin-a. Biochemical Pharmacology, 43, 419–423. DOI: 10.1016/0006-2952(92)90558-z. http://dx.doi.org/10.1016/0006-2952(92)90558-Z10.1016/0006-2952(92)90558-ZSearch in Google Scholar
[52] Wonnacott, S., & Gallagher, T. (2006). The chemistry and pharmacology of anatoxin-a and related homotropanes with respect to nicotinic acetylcholine receptors. Marine Drugs, 4, 228–254. DOI: 10.3390/md403228. http://dx.doi.org/10.3390/md40322810.3390/md403228Search in Google Scholar
[53] Wright, E., Gallagher, T., Sharples, C. G. V., & Wonnacott, S. (1997). Synthesis of UB-165: A novel nicotinic ligand and anatoxin-a/epibatidine hybrid. Bioorganic & Medicinal Chemistry Letters, 7, 2867–2870. DOI: 10.1016/s0960-894x(97)10090-7. http://dx.doi.org/10.1016/S0960-894X(97)10090-710.1016/S0960-894X(97)10090-7Search in Google Scholar
[54] Zhang, H. B., Liu, C. P., & Li, H. (2004). CoMFA and CoMSIA studies of nAChRs ligands: Epibatidine analogs. QSAR & Combinatorial Science, 23, 80–88. DOI: 10.1002/qsar.200330851. http://dx.doi.org/10.1002/qsar.20033085110.1002/qsar.200330851Search in Google Scholar
© 2014 Institute of Chemistry, Slovak Academy of Sciences
Articles in the same Issue
- Recent advances in application of liquid-based micro-extraction: A review
- Determination of nitrites and nitrates in drinking water using capillary electrophoresis
- Comparison of digestion methods for determination of total phosphorus in river sediments
- Interdisciplinary study on pottery experimentally impregnated with wine
- Improvement in γ-decalactone production by Yarrowia sp. after genome shuffling
- Development of an effective extraction process for coenzyme Q10 from Artemia
- Effect of anions on the structure and catalytic properties of a La-doped Cu-Mn catalyst in the water-gas shift reaction
- Effect of apple pomace powder addition on farinographic properties of wheat dough and biscuits quality
- Influence of caffeine and temperature on corrosion-resistance of CoCrMo alloy
- Cetyltrimethylammonium bromide- and ethylene glycol-assisted preparation of mono-dispersed indium oxide nanoparticles using hydrothermal method
- Sol-gel synthesis, characterisation, and photocatalytic activity of porous spinel Co3O4 nanosheets
- Solvent-free synthesis of β-enamino ketones and esters catalysed by recyclable iron(III) triflate
- Potassium phthalimide-catalysed one-pot multi-component reaction for efficient synthesis of amino-benzochromenes in aqueous media
- Organocatalytic SOMO reactions of copper(I)-acetylide and alkylindium compounds with aldehydes
- Molecular modelling and quantitative structure-activity relationship studies of anatoxin-a and epibatidine derivatives with affinity to rodent nAChR receptors
- Efficient one-pot synthesis of 2-hydroxyethyl per-O-acetyl glycosides
- Properties of singlet- and triplet-excited states of hemicyanine dyes
Articles in the same Issue
- Recent advances in application of liquid-based micro-extraction: A review
- Determination of nitrites and nitrates in drinking water using capillary electrophoresis
- Comparison of digestion methods for determination of total phosphorus in river sediments
- Interdisciplinary study on pottery experimentally impregnated with wine
- Improvement in γ-decalactone production by Yarrowia sp. after genome shuffling
- Development of an effective extraction process for coenzyme Q10 from Artemia
- Effect of anions on the structure and catalytic properties of a La-doped Cu-Mn catalyst in the water-gas shift reaction
- Effect of apple pomace powder addition on farinographic properties of wheat dough and biscuits quality
- Influence of caffeine and temperature on corrosion-resistance of CoCrMo alloy
- Cetyltrimethylammonium bromide- and ethylene glycol-assisted preparation of mono-dispersed indium oxide nanoparticles using hydrothermal method
- Sol-gel synthesis, characterisation, and photocatalytic activity of porous spinel Co3O4 nanosheets
- Solvent-free synthesis of β-enamino ketones and esters catalysed by recyclable iron(III) triflate
- Potassium phthalimide-catalysed one-pot multi-component reaction for efficient synthesis of amino-benzochromenes in aqueous media
- Organocatalytic SOMO reactions of copper(I)-acetylide and alkylindium compounds with aldehydes
- Molecular modelling and quantitative structure-activity relationship studies of anatoxin-a and epibatidine derivatives with affinity to rodent nAChR receptors
- Efficient one-pot synthesis of 2-hydroxyethyl per-O-acetyl glycosides
- Properties of singlet- and triplet-excited states of hemicyanine dyes