Abstract
A novel application of highly stable Fe(OTf)3 as an efficient catalyst for the synthesis of a variety of β-enamino ketones and esters under solvent-free conditions is described. Notably, this protocol of a “green synthesis”, which produced β-enamino ketones and esters by the reaction of a variety of β-dicarbonyl compounds and primary amines, exhibits attractive properties including high yields, short reaction periods, lower loading of catalyst and chemo- and regio-selectivity. In addition, the catalyst was easily recovered from the reaction system and readily reused with minimal loss of activity.
[1] Anilkumar, G., Bitterlich, B., Gelalcha, F. G., Tse, M. K., & Beller, M. (2007). An efficient biomimetic Fe-catalyzed epoxidation of olefins using hydrogen peroxide. Chemical Communications, 2007, 289–291. DOI: 10.1039/b612048b. http://dx.doi.org/10.1039/b612048b10.1039/B612048BSearch in Google Scholar PubMed
[2] Arcadi, A., Bianchi, G., Di Giuseppe, S., & Marinelli, F. (2003). Gold catalysis in the reactions of 1,3-dicarbonyls with nucleophiles. Green Chemistry, 5, 64–67. DOI: 10.1039/b210165c. http://dx.doi.org/10.1039/b210165c10.1039/b210165cSearch in Google Scholar
[3] Astruc, D., Lu, F., & Aranzaes, J. R. (2005). Nanoparticles as recyclable catalysts: The frontier between homogeneous and heterogeneous catalysis. Angewandte Chemie International Edition, 44, 7852–7872. DOI: 10.1002/anie.200500766. http://dx.doi.org/10.1002/anie.20050076610.1002/anie.200500766Search in Google Scholar PubMed
[4] Baraldi, P. G., Simoni, D., & Manfredini, S. (1983). An improved preparation of enaminones from 1,3-diketones and ammonium acetate or amine acetates. Synthesis, 11, 902–903. DOI: 10.1055/s-1983-30557. http://dx.doi.org/10.1055/s-1983-3055710.1055/s-1983-30557Search in Google Scholar
[5] Bartoli, G., Bosco, M., Locatelli, M., Marcantoni, E., Melchiorre, P., & Sambri, L. (2004). Zn(ClO4)2 · 6H2O as a powerful catalyst for the conversion of β-ketoesters into β-enamino esters. Synlett, 2004, 239–242. DOI: 10.1055/s-2003-44974. 10.1055/s-2003-44974Search in Google Scholar
[6] Bhatte, K. D., Tambade, P. J., Dhake, K. P., & Bhanage, B. M. (2010). Silver nanoparticles as an efficient, heterogeneous and recyclable catalyst for synthesis of β-enaminones. Catalysis Communications, 11, 1233–1237. DOI: 10.1016/j.catcom.2010.06.011. http://dx.doi.org/10.1016/j.catcom.2010.06.01110.1016/j.catcom.2010.06.011Search in Google Scholar
[7] Bhosale, R. S., Suryawanshi, P. A., Ingle, S. A., Lokhande, M. N., More, S. P., Mane, S. B., Bhosale, S. V., & Pawar, R. P. (2006). Ionic liquid promoted synthesis of β-enamino ketones at room temperature. Synlett, 2006, 933–935. DOI: 10.1055/s-2006-939042. http://dx.doi.org/10.1055/s-2006-93904210.1055/s-2006-939042Search in Google Scholar
[8] Braibante, H. T. S., Braibante, M. E. F., Rosso, G. B., & Oriques, D. A. (2003). Preparation of b-enamino carbonylic compounds using microwave radiation/K-10. Journal of the Brazilian Chemical Society, 14, 994–997. DOI: 10.1590/s0103-50532003000600016. http://dx.doi.org/10.1590/S0103-5053200300060001610.1590/S0103-50532003000600016Search in Google Scholar
[9] Bullock, R. M. (2007). An iron catalyst for ketone hydrogenations under mild conditions. Angewandte Chemie International Edition, 46, 7360–7363. DOI: 10.1002/anie.200703053. http://dx.doi.org/10.1002/anie.20070305310.1002/anie.200703053Search in Google Scholar PubMed
[10] Cartaya-Marin, C. P., Henderson, D. G., Soeder, R. W., & Zapata, A. J. (1997). Synthesis of enaminones using trimethylsilyl trifluoromethanesulfonate as an activator. Synthetic Communications, 27, 4275–4283. DOI: 10.1080/00397919708005051. http://dx.doi.org/10.1080/0039791970800505110.1080/00397919708005051Search in Google Scholar
[11] Chen, X., She, J., Shang, Z. C., Wu, J., & Zhang, P. Z. (2009). Room-temperature synthesis of pyrazoles, diazepines, β-enaminones, and β-enamino esters using silicasupported sulfuric acid as a reusable catalyst under solventfree conditions. Synthetic Communications, 39, 947–957. DOI: 10.1080/00397910802441551. http://dx.doi.org/10.1080/0039791080244155110.1080/00397910802441551Search in Google Scholar
[12] Damavandi, S., & Sandaroos, R. (2011). Solvent-free one pot synthesis of indenoquinolinones catalyzed by iron(III) triflate. Heterocyclic communications, 17, 121–124. DOI: 10.1515/hc.2011.028. 10.1515/hc.2011.028Search in Google Scholar
[13] Eddington, N. D., Cox, D. S., Khurana, M., Solana, N. N., Stables, J. P., Harrison, S. J., Negussie, A., Taylor, R. S., Tran, U. Q., Moore, J. A., Burrow, J. C., & Scott, K. R. (2003). Synthesis and anticonvulsant activity of enaminones: Part 7. Synthesis and anticonvulsant evaluation of ethyl 4-[(substituted phenyl)amino]-6-methyl-2-oxocyclohex-3-ene-1-carboxylates and their corresponding 5-methylcyclohex-2-enone derivatives. European Journal of Medicinal Chemistry, 38, 49–64. DOI: 10.1016/s0223-5234(02)00006-5. http://dx.doi.org/10.1016/S0223-5234(02)00006-510.1016/S0223-5234(02)00006-5Search in Google Scholar
[14] Epifano, F., Genovese, S., & Curini, M. (2007). Ytterbium tri-flate catalyzed synthesis of β-enaminones. Tetrahedron Letters, 48, 2717–2720. DOI: 10.1016/j.tetlet.2007.02.064. http://dx.doi.org/10.1016/j.tetlet.2007.02.06410.1016/j.tetlet.2007.02.064Search in Google Scholar
[15] Eshghi, H., Seyedi, S. M., Safaei, E., Vakili, M., Farhadipour, A., & Bayat-Mokhtari, M. (2012). Silica supported Fe(HSO4)3 as an efficient, heterogeneous and recyclable catalyst for synthesis of β-enaminones and β-enamino esters. Journal of Molecular Catalysis A: Chemical, 363–364, 430–436. DOI: 10.1016/j.molcata.2012.07.021. http://dx.doi.org/10.1016/j.molcata.2012.07.02110.1016/j.molcata.2012.07.021Search in Google Scholar
[16] Hauser, C. R., & Reynolds, G. A. (1948). Reactions of β-keto esters with aromatic amines. Syntheses of 2- and 4-hydroxyquinoline derivatives. Journal of the American Chemical Society, 70, 2402–2404. DOI: 10.1021/ja01187a025. 10.1021/ja01187a025Search in Google Scholar
[17] Indulkar, U. U., Kale, S. R., Gawande, M. B., & Jayaram, R. V. (2012). Ecofriendly and facile nano ZnO catalyzed solventfree enamination of 1,3-dicarbonyls. Tetrahedron Letters, 53, 3857–3860. DOI: 10.1016/j.tetlet.2012.05.048. http://dx.doi.org/10.1016/j.tetlet.2012.05.04810.1016/j.tetlet.2012.05.048Search in Google Scholar
[18] Kascheres, C. M. (2003). The chemistry of enaminones, diazocarbonyls and small rings: Our contribution. Journal of the Brazilian Chemical Society, 14, 945–969. DOI: 10.1590/s0103-50532003000600012. http://dx.doi.org/10.1590/S0103-5053200300060001210.1590/S0103-50532003000600012Search in Google Scholar
[19] Kashima, C., Aoyama, H., Yamamoto, Y., Nishio, T., & Yamada, K. (1975). Nuclear magnetic resonance spectral study of β-aminoenones. Journal of the Chemical Society, Perkin Transactions 2, 1975, 665–670. DOI: 10.1039/p29750000665. http://dx.doi.org/10.1039/p2975000066510.1039/P29750000665Search in Google Scholar
[20] Khodaei, M. M., Khosropour, A. R., & Kookhazadeh, M. (2004). Enamination of β-dicarbonyl compounds catalyzed by CeCl3 · 7H2O at ambient conditions: Ionic liquid and solvent-free media. Synlett, 2004, 1980–1984. DOI: 10.1055/s-2004-830879. 10.1055/s-2004-830879Search in Google Scholar
[21] Khodaei, M. M., Khosropour, R., & Kookhazadeh, M. (2005). A novel enamination of β-dicarbonyl compounds catalyzed by Bi(TFA)3 immobilized on molten TBAB. Canadian Journal of Chemistry, 83, 209–212. DOI: 10.1139/v05-021. http://dx.doi.org/10.1139/v05-02110.1139/v05-021Search in Google Scholar
[22] Kidwai, M., Bhardwaj, S., Mishra, N. K., Bansal, V., Kumar, A., & Mozumdar, S. (2009). A novel method for the synthesis of β-enaminones using Cu-nanoparticles as catalyst. Catalysis Communications, 10, 1514–1517. DOI: 10.1016/j.catcom.2009.04.006. http://dx.doi.org/10.1016/j.catcom.2009.04.00610.1016/j.catcom.2009.04.006Search in Google Scholar
[23] Laskar, R. A., Begum, N. A., Mir, M. H., Ali, S., & Khan, A. T. (2013). Vanadium(IV) acetylacetonate catalyzed stereoselective synthesis of β-enaminoesters and β-enaminones. Tetrahedron Letters, 54, 436–440. DOI: 10.1016/j.tetlet.2012.11.051. http://dx.doi.org/10.1016/j.tetlet.2012.11.05110.1016/j.tetlet.2012.11.051Search in Google Scholar
[24] Li, G. C. (2007). Phosphotungstic acid catalysed synthesis of β-enamino compounds under solvent-free conditions. Journal of Chemical Research, 2007, 696–698. DOI: 10.3184/030823407x273488. http://dx.doi.org/10.3184/030823407X27348810.3184/030823407X273488Search in Google Scholar
[25] Li, G. C. (2008). Simple and efficient synthesis of 3-aminopropenones and 3-aminopropenoates catalyzed by copper(II) nitrate trihydrate under solvent-free conditions. Monatshefte für Chemie-Chemical Monthly, 139, 789–792. DOI: 10.1007/s00706-007-0832-x. http://dx.doi.org/10.1007/s00706-007-0832-x10.1007/s00706-007-0832-xSearch in Google Scholar
[26] Lin, J., & Zhang, L. F. (2007). ZrCl4-catalyzed efficient synthesis of enaminones and enamino esters under solvent-free conditions. Monatshefte für Chemie-Chemical Monthly, 138, 77–81. DOI: 10.1007/s00706-006-0565-2. http://dx.doi.org/10.1007/s00706-006-0565-210.1007/s00706-006-0565-2Search in Google Scholar
[27] Nakanishi, M., & Bolm, C. (2007). Iron-catalyzed benzylic oxidation with aqueous tert-butyl hydroperoxide. Advanced Synthesis & Catalysis, 349, 861–864. DOI: 10.1002/adsc.200600553. http://dx.doi.org/10.1002/adsc.20060055310.1002/adsc.200600553Search in Google Scholar
[28] Pennington, F. C., & Kehret, W. D. (1967). Reaction of methyl and ethyl 2-cyclopentanonecarboxylates with amines to give carbinolamines, enamines, and adipamides. Journal of Organic Chemistry, 32, 2034–2036. DOI: 10.1021/jo01281a092. http://dx.doi.org/10.1021/jo01281a09210.1021/jo01281a092Search in Google Scholar
[29] Salama, N. N., Scott, K. R., & Eddington, N. D. (2004). DM27, an enaminone, modifies the in vitro transport of antiviral therapeutic agents. Biopharmaceutics & Drug Disposition, 25, 227–236. DOI: 10.1002/bdd.404. http://dx.doi.org/10.1002/bdd.40410.1002/bdd.404Search in Google Scholar PubMed
[30] Spivey, A. C., Srikaran, R., Diaper, C. M., & Turner, D. J. (2003). Traceless solid phase synthesis of 2-substituted pyrimidines using an ‘off-the-shelf’ chlorogermane-functionalised resin. Organic & Biomolecular Chemistry, 1, 1638–1640. DOI: 10.1039/b303064d. http://dx.doi.org/10.1039/b303064d10.1039/B303064DSearch in Google Scholar
[31] Štefane, B., & Polanc, S. (2004). A new regio- and chemoselective approach to β-keto amides and β-enamino carboxamides via 1,3,2-dioxaborinanes. Synlett, 2004, 698–702. DOI: 10.1055/s-2003-817787. http://dx.doi.org/10.1055/s-2003-81778710.1055/s-2003-817787Search in Google Scholar
[32] Sun, J., Dong, Z. P., Li, P., Zhang, F. W., Wei, S. Y., Shi, Z.Q., & Li, R. (2013). Ag nanoparticles in hollow magnetic mesoporous spheres: A highly efficient and magnetically separable catalyst for synthesis of β-enaminones. Materials Chemistry and Physics, 140, 1–6. DOI: 10.1016/j.matchemphys.2013.03.030. http://dx.doi.org/10.1016/j.matchemphys.2013.03.03010.1016/j.matchemphys.2013.03.030Search in Google Scholar
[33] Vohra, R. K., Renaud, J. L., & Bruneau, C. (2005). Efficient synthesis of β-aminoacrylates and β-enaminones catalyzed by Zn(OAc)2·2H2O. Collection of Czechoslovak Chemical Communications, 70, 1943–1952. DOI: 10.1135/cccc200519-43. http://dx.doi.org/10.1135/cccc20051943Search in Google Scholar
[34] Wang, H. S., & Miao, J. Y. (2007). Silica supported sodium hydrogen sulfate catalyzed efficient synthesis of β-enamino ketones and esters. Chinese Journal of Organic Chemistry, 26, 266–268. Search in Google Scholar
[35] White, J. D., & Ihle, D. C. (2006). Tandem photocycloadditionretro-mannich fragmentation of enaminones. A route to spiropyrrolines and the tetracyclic core of koumine. Organic Letters, 8, 1081–1084. DOI: 10.1021/ol052955y. 10.1021/ol052955ySearch in Google Scholar PubMed
[36] Xu, F., Lv, H. X., Wang, J. P., Tian, Y. P., & Wang, J. J. (2008). A mild method for the synthesis of β-enaminones and β-enamino esters using KH2PO4 as catalyst. Journal of Chemical Research, 2008, 707–710. DOI: 10.3184/030823408x382117. http://dx.doi.org/10.3184/030823408X38211710.3184/030823408X382117Search in Google Scholar
[37] Yadav, J. S., Kumar, V. N., Rao, R. S., Priyadarshini, A. D., Rao, P. P., Reddy, B. V. S., & Nagaiah, K. (2006). Sc(OTf)3 catalyzed highly rapid and efficient synthesis of β-enamino compounds under solvent-free conditions. Journal of Molecular Catalysis A: Chemical, 256, 234–237. DOI: 10.1016/j.molcata.2006.04.065. http://dx.doi.org/10.1016/j.molcata.2006.04.06510.1016/j.molcata.2006.04.065Search in Google Scholar
[38] Yao, C. S., Qin, B. B., Zhang, H. H., Lu, J., Wang, D. L., & Tu, S. J. (2012). One-pot solvent-free synthesis of quinolines by C-H activation/C-C bond formation catalyzed by recyclable iron(III) triflate. RSC Advances, 2, 3759–3764. DOI: 10.1039/c2ra20172k. http://dx.doi.org/10.1039/c2ra20172k10.1039/c2ra20172kSearch in Google Scholar
[39] Zhang, Z. H., & Song, L. M. (2005). A solvent-free synthesis of β-amino-α,β-unsaturated ketones and esters catalysed by sulfated zirconia. Journal of Chemical Research, 2005, 817–820. DOI: 10.3184/030823405775146997. http://dx.doi.org/10.3184/03082340577514699710.3184/030823405775146997Search in Google Scholar
[40] Zhang, Z. H., & Hu, J. Y. (2006). Cobalt(II) chloride-mediated synthesis of b-enamino compounds under solvent-free conditions. Journal of the Brazilian Chemical Society, 17, 1447–1451. DOI: 10.1590/s0103-50532006000700038. http://dx.doi.org/10.1590/S0103-5053200600070003810.1590/S0103-50532006000700038Search in Google Scholar
[41] Zhang, Z. H., Yin, L., & Wang, Y. M. (2006). A general and efficient method for the preparation of β-enamino ketones and esters catalyzed by indium tribromide. Advanced Synthesis & Catalysis, 348, 184–190. DOI: 10.1002/adsc.200505268. http://dx.doi.org/10.1002/adsc.20050526810.1002/adsc.200505268Search in Google Scholar
[42] Zhang, Z. H., Li, T. S., & Li, J. J. (2007). Synthesis of enaminones and enamino esters catalysed by ZrOCl2 · 8H2O. Catalysis Communications, 8, 1615–1620. DOI: 10.1016/j.catcom.2007.01.015. http://dx.doi.org/10.1016/j.catcom.2007.01.01510.1016/j.catcom.2007.01.015Search in Google Scholar
[43] Zhang, G. S., Liu, Q. F., Shi, L., & Wang, J. X. (2008). Ferric sulfate hydrate-catalyzed O-glycosylation using glycals with or without microwave irradiation. Tetrahedron, 64, 339–344. DOI: 10.1016/j.tet.2007.10.097. http://dx.doi.org/10.1016/j.tet.2007.10.09710.1016/j.tet.2007.10.097Search in Google Scholar
[44] Zhang, L. F., & Yang, S. T. (2009). Silica-supported antimony(III) chloride as an efficient heterogeneous catalyst for the synthesis of aminopropenones and 3-aminopropenoates under solvent-free conditions. Russian Journal of Organic Chemistry, 45, 18–21. DOI: 10.1134/s1070428009010023. http://dx.doi.org/10.1134/S107042800901002310.1134/S1070428009010023Search in Google Scholar
[45] Zhao, Y. H., Zhao, J. F., Zhou, Y. G., Lei, Z., Li, L., & Zhang, H. B. (2005). Efficient synthesis of β-amino-α,β-unsaturated carbonyl compounds. New Journal of Chemistry, 29, 769–772. DOI: 10.1039/b419254k. http://dx.doi.org/10.1039/b419254k10.1039/b419254kSearch in Google Scholar
© 2014 Institute of Chemistry, Slovak Academy of Sciences
Articles in the same Issue
- Recent advances in application of liquid-based micro-extraction: A review
- Determination of nitrites and nitrates in drinking water using capillary electrophoresis
- Comparison of digestion methods for determination of total phosphorus in river sediments
- Interdisciplinary study on pottery experimentally impregnated with wine
- Improvement in γ-decalactone production by Yarrowia sp. after genome shuffling
- Development of an effective extraction process for coenzyme Q10 from Artemia
- Effect of anions on the structure and catalytic properties of a La-doped Cu-Mn catalyst in the water-gas shift reaction
- Effect of apple pomace powder addition on farinographic properties of wheat dough and biscuits quality
- Influence of caffeine and temperature on corrosion-resistance of CoCrMo alloy
- Cetyltrimethylammonium bromide- and ethylene glycol-assisted preparation of mono-dispersed indium oxide nanoparticles using hydrothermal method
- Sol-gel synthesis, characterisation, and photocatalytic activity of porous spinel Co3O4 nanosheets
- Solvent-free synthesis of β-enamino ketones and esters catalysed by recyclable iron(III) triflate
- Potassium phthalimide-catalysed one-pot multi-component reaction for efficient synthesis of amino-benzochromenes in aqueous media
- Organocatalytic SOMO reactions of copper(I)-acetylide and alkylindium compounds with aldehydes
- Molecular modelling and quantitative structure-activity relationship studies of anatoxin-a and epibatidine derivatives with affinity to rodent nAChR receptors
- Efficient one-pot synthesis of 2-hydroxyethyl per-O-acetyl glycosides
- Properties of singlet- and triplet-excited states of hemicyanine dyes
Articles in the same Issue
- Recent advances in application of liquid-based micro-extraction: A review
- Determination of nitrites and nitrates in drinking water using capillary electrophoresis
- Comparison of digestion methods for determination of total phosphorus in river sediments
- Interdisciplinary study on pottery experimentally impregnated with wine
- Improvement in γ-decalactone production by Yarrowia sp. after genome shuffling
- Development of an effective extraction process for coenzyme Q10 from Artemia
- Effect of anions on the structure and catalytic properties of a La-doped Cu-Mn catalyst in the water-gas shift reaction
- Effect of apple pomace powder addition on farinographic properties of wheat dough and biscuits quality
- Influence of caffeine and temperature on corrosion-resistance of CoCrMo alloy
- Cetyltrimethylammonium bromide- and ethylene glycol-assisted preparation of mono-dispersed indium oxide nanoparticles using hydrothermal method
- Sol-gel synthesis, characterisation, and photocatalytic activity of porous spinel Co3O4 nanosheets
- Solvent-free synthesis of β-enamino ketones and esters catalysed by recyclable iron(III) triflate
- Potassium phthalimide-catalysed one-pot multi-component reaction for efficient synthesis of amino-benzochromenes in aqueous media
- Organocatalytic SOMO reactions of copper(I)-acetylide and alkylindium compounds with aldehydes
- Molecular modelling and quantitative structure-activity relationship studies of anatoxin-a and epibatidine derivatives with affinity to rodent nAChR receptors
- Efficient one-pot synthesis of 2-hydroxyethyl per-O-acetyl glycosides
- Properties of singlet- and triplet-excited states of hemicyanine dyes