Home Solvent-free synthesis of β-enamino ketones and esters catalysed by recyclable iron(III) triflate
Article
Licensed
Unlicensed Requires Authentication

Solvent-free synthesis of β-enamino ketones and esters catalysed by recyclable iron(III) triflate

  • Cheng-Liang Feng EMAIL logo , Ning-Ning Chu , Shu-Guang Zhang , Jin Cai , Jun-Qing Chen , Hua-You Hu and Min Ji
Published/Copyright: April 15, 2014
Become an author with De Gruyter Brill

Abstract

A novel application of highly stable Fe(OTf)3 as an efficient catalyst for the synthesis of a variety of β-enamino ketones and esters under solvent-free conditions is described. Notably, this protocol of a “green synthesis”, which produced β-enamino ketones and esters by the reaction of a variety of β-dicarbonyl compounds and primary amines, exhibits attractive properties including high yields, short reaction periods, lower loading of catalyst and chemo- and regio-selectivity. In addition, the catalyst was easily recovered from the reaction system and readily reused with minimal loss of activity.

[1] Anilkumar, G., Bitterlich, B., Gelalcha, F. G., Tse, M. K., & Beller, M. (2007). An efficient biomimetic Fe-catalyzed epoxidation of olefins using hydrogen peroxide. Chemical Communications, 2007, 289–291. DOI: 10.1039/b612048b. http://dx.doi.org/10.1039/b612048b10.1039/B612048BSearch in Google Scholar PubMed

[2] Arcadi, A., Bianchi, G., Di Giuseppe, S., & Marinelli, F. (2003). Gold catalysis in the reactions of 1,3-dicarbonyls with nucleophiles. Green Chemistry, 5, 64–67. DOI: 10.1039/b210165c. http://dx.doi.org/10.1039/b210165c10.1039/b210165cSearch in Google Scholar

[3] Astruc, D., Lu, F., & Aranzaes, J. R. (2005). Nanoparticles as recyclable catalysts: The frontier between homogeneous and heterogeneous catalysis. Angewandte Chemie International Edition, 44, 7852–7872. DOI: 10.1002/anie.200500766. http://dx.doi.org/10.1002/anie.20050076610.1002/anie.200500766Search in Google Scholar PubMed

[4] Baraldi, P. G., Simoni, D., & Manfredini, S. (1983). An improved preparation of enaminones from 1,3-diketones and ammonium acetate or amine acetates. Synthesis, 11, 902–903. DOI: 10.1055/s-1983-30557. http://dx.doi.org/10.1055/s-1983-3055710.1055/s-1983-30557Search in Google Scholar

[5] Bartoli, G., Bosco, M., Locatelli, M., Marcantoni, E., Melchiorre, P., & Sambri, L. (2004). Zn(ClO4)2 · 6H2O as a powerful catalyst for the conversion of β-ketoesters into β-enamino esters. Synlett, 2004, 239–242. DOI: 10.1055/s-2003-44974. 10.1055/s-2003-44974Search in Google Scholar

[6] Bhatte, K. D., Tambade, P. J., Dhake, K. P., & Bhanage, B. M. (2010). Silver nanoparticles as an efficient, heterogeneous and recyclable catalyst for synthesis of β-enaminones. Catalysis Communications, 11, 1233–1237. DOI: 10.1016/j.catcom.2010.06.011. http://dx.doi.org/10.1016/j.catcom.2010.06.01110.1016/j.catcom.2010.06.011Search in Google Scholar

[7] Bhosale, R. S., Suryawanshi, P. A., Ingle, S. A., Lokhande, M. N., More, S. P., Mane, S. B., Bhosale, S. V., & Pawar, R. P. (2006). Ionic liquid promoted synthesis of β-enamino ketones at room temperature. Synlett, 2006, 933–935. DOI: 10.1055/s-2006-939042. http://dx.doi.org/10.1055/s-2006-93904210.1055/s-2006-939042Search in Google Scholar

[8] Braibante, H. T. S., Braibante, M. E. F., Rosso, G. B., & Oriques, D. A. (2003). Preparation of b-enamino carbonylic compounds using microwave radiation/K-10. Journal of the Brazilian Chemical Society, 14, 994–997. DOI: 10.1590/s0103-50532003000600016. http://dx.doi.org/10.1590/S0103-5053200300060001610.1590/S0103-50532003000600016Search in Google Scholar

[9] Bullock, R. M. (2007). An iron catalyst for ketone hydrogenations under mild conditions. Angewandte Chemie International Edition, 46, 7360–7363. DOI: 10.1002/anie.200703053. http://dx.doi.org/10.1002/anie.20070305310.1002/anie.200703053Search in Google Scholar PubMed

[10] Cartaya-Marin, C. P., Henderson, D. G., Soeder, R. W., & Zapata, A. J. (1997). Synthesis of enaminones using trimethylsilyl trifluoromethanesulfonate as an activator. Synthetic Communications, 27, 4275–4283. DOI: 10.1080/00397919708005051. http://dx.doi.org/10.1080/0039791970800505110.1080/00397919708005051Search in Google Scholar

[11] Chen, X., She, J., Shang, Z. C., Wu, J., & Zhang, P. Z. (2009). Room-temperature synthesis of pyrazoles, diazepines, β-enaminones, and β-enamino esters using silicasupported sulfuric acid as a reusable catalyst under solventfree conditions. Synthetic Communications, 39, 947–957. DOI: 10.1080/00397910802441551. http://dx.doi.org/10.1080/0039791080244155110.1080/00397910802441551Search in Google Scholar

[12] Damavandi, S., & Sandaroos, R. (2011). Solvent-free one pot synthesis of indenoquinolinones catalyzed by iron(III) triflate. Heterocyclic communications, 17, 121–124. DOI: 10.1515/hc.2011.028. 10.1515/hc.2011.028Search in Google Scholar

[13] Eddington, N. D., Cox, D. S., Khurana, M., Solana, N. N., Stables, J. P., Harrison, S. J., Negussie, A., Taylor, R. S., Tran, U. Q., Moore, J. A., Burrow, J. C., & Scott, K. R. (2003). Synthesis and anticonvulsant activity of enaminones: Part 7. Synthesis and anticonvulsant evaluation of ethyl 4-[(substituted phenyl)amino]-6-methyl-2-oxocyclohex-3-ene-1-carboxylates and their corresponding 5-methylcyclohex-2-enone derivatives. European Journal of Medicinal Chemistry, 38, 49–64. DOI: 10.1016/s0223-5234(02)00006-5. http://dx.doi.org/10.1016/S0223-5234(02)00006-510.1016/S0223-5234(02)00006-5Search in Google Scholar

[14] Epifano, F., Genovese, S., & Curini, M. (2007). Ytterbium tri-flate catalyzed synthesis of β-enaminones. Tetrahedron Letters, 48, 2717–2720. DOI: 10.1016/j.tetlet.2007.02.064. http://dx.doi.org/10.1016/j.tetlet.2007.02.06410.1016/j.tetlet.2007.02.064Search in Google Scholar

[15] Eshghi, H., Seyedi, S. M., Safaei, E., Vakili, M., Farhadipour, A., & Bayat-Mokhtari, M. (2012). Silica supported Fe(HSO4)3 as an efficient, heterogeneous and recyclable catalyst for synthesis of β-enaminones and β-enamino esters. Journal of Molecular Catalysis A: Chemical, 363–364, 430–436. DOI: 10.1016/j.molcata.2012.07.021. http://dx.doi.org/10.1016/j.molcata.2012.07.02110.1016/j.molcata.2012.07.021Search in Google Scholar

[16] Hauser, C. R., & Reynolds, G. A. (1948). Reactions of β-keto esters with aromatic amines. Syntheses of 2- and 4-hydroxyquinoline derivatives. Journal of the American Chemical Society, 70, 2402–2404. DOI: 10.1021/ja01187a025. 10.1021/ja01187a025Search in Google Scholar

[17] Indulkar, U. U., Kale, S. R., Gawande, M. B., & Jayaram, R. V. (2012). Ecofriendly and facile nano ZnO catalyzed solventfree enamination of 1,3-dicarbonyls. Tetrahedron Letters, 53, 3857–3860. DOI: 10.1016/j.tetlet.2012.05.048. http://dx.doi.org/10.1016/j.tetlet.2012.05.04810.1016/j.tetlet.2012.05.048Search in Google Scholar

[18] Kascheres, C. M. (2003). The chemistry of enaminones, diazocarbonyls and small rings: Our contribution. Journal of the Brazilian Chemical Society, 14, 945–969. DOI: 10.1590/s0103-50532003000600012. http://dx.doi.org/10.1590/S0103-5053200300060001210.1590/S0103-50532003000600012Search in Google Scholar

[19] Kashima, C., Aoyama, H., Yamamoto, Y., Nishio, T., & Yamada, K. (1975). Nuclear magnetic resonance spectral study of β-aminoenones. Journal of the Chemical Society, Perkin Transactions 2, 1975, 665–670. DOI: 10.1039/p29750000665. http://dx.doi.org/10.1039/p2975000066510.1039/P29750000665Search in Google Scholar

[20] Khodaei, M. M., Khosropour, A. R., & Kookhazadeh, M. (2004). Enamination of β-dicarbonyl compounds catalyzed by CeCl3 · 7H2O at ambient conditions: Ionic liquid and solvent-free media. Synlett, 2004, 1980–1984. DOI: 10.1055/s-2004-830879. 10.1055/s-2004-830879Search in Google Scholar

[21] Khodaei, M. M., Khosropour, R., & Kookhazadeh, M. (2005). A novel enamination of β-dicarbonyl compounds catalyzed by Bi(TFA)3 immobilized on molten TBAB. Canadian Journal of Chemistry, 83, 209–212. DOI: 10.1139/v05-021. http://dx.doi.org/10.1139/v05-02110.1139/v05-021Search in Google Scholar

[22] Kidwai, M., Bhardwaj, S., Mishra, N. K., Bansal, V., Kumar, A., & Mozumdar, S. (2009). A novel method for the synthesis of β-enaminones using Cu-nanoparticles as catalyst. Catalysis Communications, 10, 1514–1517. DOI: 10.1016/j.catcom.2009.04.006. http://dx.doi.org/10.1016/j.catcom.2009.04.00610.1016/j.catcom.2009.04.006Search in Google Scholar

[23] Laskar, R. A., Begum, N. A., Mir, M. H., Ali, S., & Khan, A. T. (2013). Vanadium(IV) acetylacetonate catalyzed stereoselective synthesis of β-enaminoesters and β-enaminones. Tetrahedron Letters, 54, 436–440. DOI: 10.1016/j.tetlet.2012.11.051. http://dx.doi.org/10.1016/j.tetlet.2012.11.05110.1016/j.tetlet.2012.11.051Search in Google Scholar

[24] Li, G. C. (2007). Phosphotungstic acid catalysed synthesis of β-enamino compounds under solvent-free conditions. Journal of Chemical Research, 2007, 696–698. DOI: 10.3184/030823407x273488. http://dx.doi.org/10.3184/030823407X27348810.3184/030823407X273488Search in Google Scholar

[25] Li, G. C. (2008). Simple and efficient synthesis of 3-aminopropenones and 3-aminopropenoates catalyzed by copper(II) nitrate trihydrate under solvent-free conditions. Monatshefte für Chemie-Chemical Monthly, 139, 789–792. DOI: 10.1007/s00706-007-0832-x. http://dx.doi.org/10.1007/s00706-007-0832-x10.1007/s00706-007-0832-xSearch in Google Scholar

[26] Lin, J., & Zhang, L. F. (2007). ZrCl4-catalyzed efficient synthesis of enaminones and enamino esters under solvent-free conditions. Monatshefte für Chemie-Chemical Monthly, 138, 77–81. DOI: 10.1007/s00706-006-0565-2. http://dx.doi.org/10.1007/s00706-006-0565-210.1007/s00706-006-0565-2Search in Google Scholar

[27] Nakanishi, M., & Bolm, C. (2007). Iron-catalyzed benzylic oxidation with aqueous tert-butyl hydroperoxide. Advanced Synthesis & Catalysis, 349, 861–864. DOI: 10.1002/adsc.200600553. http://dx.doi.org/10.1002/adsc.20060055310.1002/adsc.200600553Search in Google Scholar

[28] Pennington, F. C., & Kehret, W. D. (1967). Reaction of methyl and ethyl 2-cyclopentanonecarboxylates with amines to give carbinolamines, enamines, and adipamides. Journal of Organic Chemistry, 32, 2034–2036. DOI: 10.1021/jo01281a092. http://dx.doi.org/10.1021/jo01281a09210.1021/jo01281a092Search in Google Scholar

[29] Salama, N. N., Scott, K. R., & Eddington, N. D. (2004). DM27, an enaminone, modifies the in vitro transport of antiviral therapeutic agents. Biopharmaceutics & Drug Disposition, 25, 227–236. DOI: 10.1002/bdd.404. http://dx.doi.org/10.1002/bdd.40410.1002/bdd.404Search in Google Scholar PubMed

[30] Spivey, A. C., Srikaran, R., Diaper, C. M., & Turner, D. J. (2003). Traceless solid phase synthesis of 2-substituted pyrimidines using an ‘off-the-shelf’ chlorogermane-functionalised resin. Organic & Biomolecular Chemistry, 1, 1638–1640. DOI: 10.1039/b303064d. http://dx.doi.org/10.1039/b303064d10.1039/B303064DSearch in Google Scholar

[31] Štefane, B., & Polanc, S. (2004). A new regio- and chemoselective approach to β-keto amides and β-enamino carboxamides via 1,3,2-dioxaborinanes. Synlett, 2004, 698–702. DOI: 10.1055/s-2003-817787. http://dx.doi.org/10.1055/s-2003-81778710.1055/s-2003-817787Search in Google Scholar

[32] Sun, J., Dong, Z. P., Li, P., Zhang, F. W., Wei, S. Y., Shi, Z.Q., & Li, R. (2013). Ag nanoparticles in hollow magnetic mesoporous spheres: A highly efficient and magnetically separable catalyst for synthesis of β-enaminones. Materials Chemistry and Physics, 140, 1–6. DOI: 10.1016/j.matchemphys.2013.03.030. http://dx.doi.org/10.1016/j.matchemphys.2013.03.03010.1016/j.matchemphys.2013.03.030Search in Google Scholar

[33] Vohra, R. K., Renaud, J. L., & Bruneau, C. (2005). Efficient synthesis of β-aminoacrylates and β-enaminones catalyzed by Zn(OAc)2·2H2O. Collection of Czechoslovak Chemical Communications, 70, 1943–1952. DOI: 10.1135/cccc200519-43. http://dx.doi.org/10.1135/cccc20051943Search in Google Scholar

[34] Wang, H. S., & Miao, J. Y. (2007). Silica supported sodium hydrogen sulfate catalyzed efficient synthesis of β-enamino ketones and esters. Chinese Journal of Organic Chemistry, 26, 266–268. Search in Google Scholar

[35] White, J. D., & Ihle, D. C. (2006). Tandem photocycloadditionretro-mannich fragmentation of enaminones. A route to spiropyrrolines and the tetracyclic core of koumine. Organic Letters, 8, 1081–1084. DOI: 10.1021/ol052955y. 10.1021/ol052955ySearch in Google Scholar PubMed

[36] Xu, F., Lv, H. X., Wang, J. P., Tian, Y. P., & Wang, J. J. (2008). A mild method for the synthesis of β-enaminones and β-enamino esters using KH2PO4 as catalyst. Journal of Chemical Research, 2008, 707–710. DOI: 10.3184/030823408x382117. http://dx.doi.org/10.3184/030823408X38211710.3184/030823408X382117Search in Google Scholar

[37] Yadav, J. S., Kumar, V. N., Rao, R. S., Priyadarshini, A. D., Rao, P. P., Reddy, B. V. S., & Nagaiah, K. (2006). Sc(OTf)3 catalyzed highly rapid and efficient synthesis of β-enamino compounds under solvent-free conditions. Journal of Molecular Catalysis A: Chemical, 256, 234–237. DOI: 10.1016/j.molcata.2006.04.065. http://dx.doi.org/10.1016/j.molcata.2006.04.06510.1016/j.molcata.2006.04.065Search in Google Scholar

[38] Yao, C. S., Qin, B. B., Zhang, H. H., Lu, J., Wang, D. L., & Tu, S. J. (2012). One-pot solvent-free synthesis of quinolines by C-H activation/C-C bond formation catalyzed by recyclable iron(III) triflate. RSC Advances, 2, 3759–3764. DOI: 10.1039/c2ra20172k. http://dx.doi.org/10.1039/c2ra20172k10.1039/c2ra20172kSearch in Google Scholar

[39] Zhang, Z. H., & Song, L. M. (2005). A solvent-free synthesis of β-amino-α,β-unsaturated ketones and esters catalysed by sulfated zirconia. Journal of Chemical Research, 2005, 817–820. DOI: 10.3184/030823405775146997. http://dx.doi.org/10.3184/03082340577514699710.3184/030823405775146997Search in Google Scholar

[40] Zhang, Z. H., & Hu, J. Y. (2006). Cobalt(II) chloride-mediated synthesis of b-enamino compounds under solvent-free conditions. Journal of the Brazilian Chemical Society, 17, 1447–1451. DOI: 10.1590/s0103-50532006000700038. http://dx.doi.org/10.1590/S0103-5053200600070003810.1590/S0103-50532006000700038Search in Google Scholar

[41] Zhang, Z. H., Yin, L., & Wang, Y. M. (2006). A general and efficient method for the preparation of β-enamino ketones and esters catalyzed by indium tribromide. Advanced Synthesis & Catalysis, 348, 184–190. DOI: 10.1002/adsc.200505268. http://dx.doi.org/10.1002/adsc.20050526810.1002/adsc.200505268Search in Google Scholar

[42] Zhang, Z. H., Li, T. S., & Li, J. J. (2007). Synthesis of enaminones and enamino esters catalysed by ZrOCl2 · 8H2O. Catalysis Communications, 8, 1615–1620. DOI: 10.1016/j.catcom.2007.01.015. http://dx.doi.org/10.1016/j.catcom.2007.01.01510.1016/j.catcom.2007.01.015Search in Google Scholar

[43] Zhang, G. S., Liu, Q. F., Shi, L., & Wang, J. X. (2008). Ferric sulfate hydrate-catalyzed O-glycosylation using glycals with or without microwave irradiation. Tetrahedron, 64, 339–344. DOI: 10.1016/j.tet.2007.10.097. http://dx.doi.org/10.1016/j.tet.2007.10.09710.1016/j.tet.2007.10.097Search in Google Scholar

[44] Zhang, L. F., & Yang, S. T. (2009). Silica-supported antimony(III) chloride as an efficient heterogeneous catalyst for the synthesis of aminopropenones and 3-aminopropenoates under solvent-free conditions. Russian Journal of Organic Chemistry, 45, 18–21. DOI: 10.1134/s1070428009010023. http://dx.doi.org/10.1134/S107042800901002310.1134/S1070428009010023Search in Google Scholar

[45] Zhao, Y. H., Zhao, J. F., Zhou, Y. G., Lei, Z., Li, L., & Zhang, H. B. (2005). Efficient synthesis of β-amino-α,β-unsaturated carbonyl compounds. New Journal of Chemistry, 29, 769–772. DOI: 10.1039/b419254k. http://dx.doi.org/10.1039/b419254k10.1039/b419254kSearch in Google Scholar

Published Online: 2014-4-15
Published in Print: 2014-8-1

© 2014 Institute of Chemistry, Slovak Academy of Sciences

Articles in the same Issue

  1. Recent advances in application of liquid-based micro-extraction: A review
  2. Determination of nitrites and nitrates in drinking water using capillary electrophoresis
  3. Comparison of digestion methods for determination of total phosphorus in river sediments
  4. Interdisciplinary study on pottery experimentally impregnated with wine
  5. Improvement in γ-decalactone production by Yarrowia sp. after genome shuffling
  6. Development of an effective extraction process for coenzyme Q10 from Artemia
  7. Effect of anions on the structure and catalytic properties of a La-doped Cu-Mn catalyst in the water-gas shift reaction
  8. Effect of apple pomace powder addition on farinographic properties of wheat dough and biscuits quality
  9. Influence of caffeine and temperature on corrosion-resistance of CoCrMo alloy
  10. Cetyltrimethylammonium bromide- and ethylene glycol-assisted preparation of mono-dispersed indium oxide nanoparticles using hydrothermal method
  11. Sol-gel synthesis, characterisation, and photocatalytic activity of porous spinel Co3O4 nanosheets
  12. Solvent-free synthesis of β-enamino ketones and esters catalysed by recyclable iron(III) triflate
  13. Potassium phthalimide-catalysed one-pot multi-component reaction for efficient synthesis of amino-benzochromenes in aqueous media
  14. Organocatalytic SOMO reactions of copper(I)-acetylide and alkylindium compounds with aldehydes
  15. Molecular modelling and quantitative structure-activity relationship studies of anatoxin-a and epibatidine derivatives with affinity to rodent nAChR receptors
  16. Efficient one-pot synthesis of 2-hydroxyethyl per-O-acetyl glycosides
  17. Properties of singlet- and triplet-excited states of hemicyanine dyes
Downloaded on 26.11.2025 from https://www.degruyterbrill.com/document/doi/10.2478/s11696-014-0544-8/pdf
Scroll to top button