Home Cetyltrimethylammonium bromide- and ethylene glycol-assisted preparation of mono-dispersed indium oxide nanoparticles using hydrothermal method
Article
Licensed
Unlicensed Requires Authentication

Cetyltrimethylammonium bromide- and ethylene glycol-assisted preparation of mono-dispersed indium oxide nanoparticles using hydrothermal method

  • Selvakumar Dhanasingh EMAIL logo , Dharmaraj Nallasamy , Saravanan Padmanapan and Vinod Padaki
Published/Copyright: April 15, 2014
Become an author with De Gruyter Brill

Abstract

The influence of cetyltrimethylammonium bromide and ethylene glycol on the size and dispersion of indium oxide nanoparticles prepared under hydrothermal conditions was investigated. The precursor compound, indium hydroxide, obtained by the hydrothermal method in the absence as well as the presence of cetyltrimethylammonium bromide, was converted to indium oxide by sintering at 400°C. The formation of nanoscale indium oxide upon sintering was ascertained by the characteristic infrared adsorption bands and X-ray diffraction patterns of indium oxide. Transmission electron microscopy and band gap values confirmed that the cetyltrimethylammonium bromide facilitated the formation of indium oxide nanoparticles smaller in size and narrower in distribution than those prepared without the assistance of cetyltrimethylammonium bromide.

[1] Avivi, S., Mastai, Y., & Gedanken, A. (2000). Sonohydrolysis of In+3 ions: Formation of needlelike particles of indium hydroxide. Chemistry of Materials, 12, 1229–1233. DOI: 10.1021/cm9903677. http://dx.doi.org/10.1021/cm990367710.1021/cm9903677Search in Google Scholar

[2] Blažzević, N., Kolbah, D., Belin, B., Šunjić, V., & Kajfez, F. (1979). Hexamethylenetetramine, a versatile reagent in organic synthesis. Synthesis, 1979, 161–176. DOI: 10.1055/s-1979-28602. http://dx.doi.org/10.1055/s-1979-2860210.1055/s-1979-28602Search in Google Scholar

[3] Cullity, B. D., & Stock, S. R. (2001). Elements of X-ray diffraction (3rd ed.). Houston, TX, USA: Prentice Hall. Search in Google Scholar

[4] Davis, E. A., & Mott, N. F. (1970). Conduction in noncrystalline systems V. Conductivity, optical absorption and photoconductivity in amorphous semiconductors. Philosophical Magazine, 22, 903–922. DOI: 10.1080/14786437008221-061. http://dx.doi.org/10.1080/14786437008221061Search in Google Scholar

[5] Elouali, S., Bloor, L. G., Binions, B., Parkin, I. P., Carmalt, C. J., & Darr, J. A. (2012). Gas sensing with nano-indium oxides (In2O3) prepared via continuous hydrothermal flow synthesis. Langmuir, 28, 1879–1885. DOI: 10.1021/la203565h. http://dx.doi.org/10.1021/la203565h10.1021/la203565hSearch in Google Scholar

[6] Eranna, G., Joshi, B. C., Runthala, D. P., & Gupta, R. P. (2004). Oxide materials for development of integrated gas sensors-A comprehensive review. Critical Reviews in Solid State and Materials Sciences, 29, 111–188. DOI: 10.1080/10408430490888977. http://dx.doi.org/10.1080/1040843049088897710.1080/10408430490888977Search in Google Scholar

[7] Gopchandran, K. G., Joseph, B., Abraham, J. T., Koshy, P., & Vaidyan, V. K. (1997). The preparation of transparent electrically conducting indium oxide films by reactive vacuum evaporation. Vacuum, 48, 547–550. DOI: 10.1016/s0042-207x(97)00023-7. http://dx.doi.org/10.1016/S0042-207X(97)00023-710.1016/S0042-207X(97)00023-7Search in Google Scholar

[8] Granqvist, C. G. (1993). Transparent conductive electrodes for electrochromic devices: A review. Applied Physics A, 57, 19–24. DOI: 10.1007/bf00331211. http://dx.doi.org/10.1007/BF0033121110.1007/BF00331211Search in Google Scholar

[9] Guha, P., Kar, S., & Chaudhuri, S. (2004). Direct synthesis of single crystalline In2O3 nanopyramids and nanocolumns and their photoluminescence properties. Applied Physics Letters, 85, 3851–3853. DOI: 10.1063/1.1808886. http://dx.doi.org/10.1063/1.180888610.1063/1.1808886Search in Google Scholar

[10] Guo, L. J., Shen, X. P., Zhu, G. X., & Chen, K. M. (2011). Preparation and gas-sensing performance of In2O3 porous nanoplatelets. Sensors and Actuators B: Chemical, 155, 752–758. DOI: 10.1016/j.snb.2011.01.042. http://dx.doi.org/10.1016/j.snb.2011.01.04210.1016/j.snb.2011.01.042Search in Google Scholar

[11] Hamburg, I., & Granqvist, C. G. (1986). Evaporated Sn-doped In2O3 films: Basic optical properties and applications to energy-efficient windows. Journal of Applied Physics, 60, R123–R159. DOI: 10.1063/1.337534. http://dx.doi.org/10.1063/1.33753410.1063/1.337534Search in Google Scholar

[12] Hayashi, H., & Hakuta, Y. (2010). Hydrothermal synthesis of metal oxide nanoparticles in supercritical water. Materials, 3, 3794–3817. DOI: 10.3390/ma3073794. http://dx.doi.org/10.3390/ma307379410.3390/ma3073794Search in Google Scholar PubMed PubMed Central

[13] Ho, C. M., Yu, J. C., Kwong, T., Mak, A. C., & Lai, S. I. (2005). Morphology-controllable synthesis of mesoporous CeO2 nano-and microstructures. Chemistry of Materials, 17, 4514–4522. DOI: 10.1021/cm0507967. http://dx.doi.org/10.1021/cm050796710.1021/cm0507967Search in Google Scholar

[14] Ho, W. H., & Yen, S. K. (2006). Preparation and characterization of indium oxide film by electrochemical deposition. Thin Solid Films, 498, 80–84. DOI: 10.1016/j.tsf.2005.07.072. http://dx.doi.org/10.1016/j.tsf.2005.07.07210.1016/j.tsf.2005.07.072Search in Google Scholar

[15] Huang, C. C., & Yeh, C. S. (2008). Porous cube like In2O3 nanoparticles and their sensing characteristics towards ethanol. Journal of Materials Science and Technology, 24, 667–674. http://dx.doi.org/10.1179/174328408X31109910.1179/174328408X311099Search in Google Scholar

[16] Jiang, X. C., Wang, Y. L., Herricks, T., & Xia, Y. N. (2004). Ethylene glycol-mediated synthesis of metal oxide nanowires. Journal of Materials Chemistry, 14, 695–703. DOI: 10.1039/b313938g. http://dx.doi.org/10.1039/b313938g10.1039/b313938gSearch in Google Scholar

[17] Jiang, L. H., Sun, G. Q., Zhou, Z. H., Sun, S. G., Wang, Q., Yan, S. Y., Li, H. Q., Tian, J., Guo, J. S., Zhou, B., & Xin, Q. (2005). Size-controllable synthesis of monodispersed SnO2 nanoparticles and application in electrocatalysts. Journal of Physical Chemistry B, 109, 8774–8778. DOI: 10.1021/jp050334g. http://dx.doi.org/10.1021/jp050334g10.1021/jp050334gSearch in Google Scholar

[18] Kakihana, M., Arima, M., Yoshimura, M., Ikeda, N., & Sugitani, Y. (1999). Synthesis of high surface area LaMnO3+d by a polymerizable complex method. Journal of Alloys and Compounds, 283, 102–105. DOI: 10.1016/s0925-8388(98)00865-2. http://dx.doi.org/10.1016/S0925-8388(98)00865-210.1016/S0925-8388(98)00865-2Search in Google Scholar

[19] Kumar, M., Singh, V. N., Singh, F., Lakshmi, K. V., Mehta, B. R., & Singh, J. P. (2008). On the origin of photoluminescence in indium oxide octahedron structures. Applied Physics Letters, 92, 171907–171911. DOI: 10.1063/1.2910501. http://dx.doi.org/10.1063/1.291050110.1063/1.2910501Search in Google Scholar

[20] Kundu, S., & Biswas, P. K. (2005). Synthesis and photoluminescence property of nanostructured sol-gel indium tin oxide films on glass. Chemical Physics Letters, 414, 107–110. DOI: 10.1016/j.cplett.2005.08.062. http://dx.doi.org/10.1016/j.cplett.2005.08.06210.1016/j.cplett.2005.08.062Search in Google Scholar

[21] Lee, S. J., Biegalski, M. D., & Kriven, W. M. (1999). Powder synthesis of barium titanate and barium orthotitanate via an ethylene glycol polymerization route. Journal of Materials Research, 14, 3001–3006. DOI: 10.1557/jmr.1999.0403. http://dx.doi.org/10.1557/JMR.1999.040310.1557/JMR.1999.0403Search in Google Scholar

[22] Lei, Z. B., Ma, G. J., Liu, M. Y., You, W. S., Yan, H. J., Wu, G. P., Takata, T., Hara, M., Domen, K., & Li, C. (2006). Sulfur-substituted and zinc-doped In(OH)3: A new class of catalyst for photocatalytic H2 production from water under visible light illumination. Journal of Catalysis, 237, 322–329. DOI: 10.1016/j.jcat.2005.11.022. http://dx.doi.org/10.1016/j.jcat.2005.11.02210.1016/j.jcat.2005.11.022Search in Google Scholar

[23] Li, Y. F., Jiang, J. Y., Ma, Y. J., Fan, G. C., Huang, Z. Y., Ban, C. X., & Qin, L. A. (2010a). Single microemulsion-based hydrothermal approach to In(OH)3 and In2O3 nanocubes. Chinese Journal of Chemistry, 28, 2188–2192. DOI: 10.1002/cjoc.201090361. http://dx.doi.org/10.1002/cjoc.20109036110.1002/cjoc.201090361Search in Google Scholar

[24] Li, C. G., Lian, S. Y., Liu, Y., Liu, S. X., & Kang, Z. H. (2010b). Preparation and photoluminescence study of mesoporous indium hydroxide nanorods. Materials Research Bulletin, 45, 109–112. DOI: 10.1016/j.materresbull.2009.10.002. http://dx.doi.org/10.1016/j.materresbull.2009.10.00210.1016/j.materresbull.2009.10.002Search in Google Scholar

[25] Liu, X. H., Zhou, L. B., Yi, R., Zhang, N., Shi, R. R., Gao, G. H., & Qiu, G. Z. (2008) Single-crystalline indium hydroxide and indium oxide microcubes: Synthesis and characterization. Journal of Physical Chemistry C, 112, 18426–18430. DOI: 10.1021/jp802778p. http://dx.doi.org/10.1021/jp802778p10.1021/jp802778pSearch in Google Scholar

[26] Liu, G. D. (2011). Synthesis, characterization of In2O3 nanocrystals and their photoluminescence property. International Journal of Electrochemical Science, 6, 2162–2170. Search in Google Scholar

[27] Marques, V. S., Cavalcante, L. S., Sczancoski, J. C., Alcântara, A. F. P., Orlandi, M. O., Moraes, E., Longo, E., Varela, J. A., Li, M. S., & Santos, M. R. M. C. (2010). Effect of different solvent ratios (water/ethylene glycol) on the growth process of CaMoO4 crystals and their optical properties. Crystal Growth and Design, 10, 4752–4768. DOI: 10.1021/cg100584b. http://dx.doi.org/10.1021/cg100584b10.1021/cg100584bSearch in Google Scholar

[28] Niederberger, M., Garnweitner, G., Buha, J., Polleux, J., Ba, J. H., & Pinna, N. (2006). Nonaqueous synthesis of metal oxide nanoparticles: Review and indium oxide as case study for the dependence of particle morphology on precursors and solvents. Journal of Sol-Gel Science and Technology, 40, 259–266. DOI: 10.1007/s10971-006-6668-8. http://dx.doi.org/10.1007/s10971-006-6668-810.1007/s10971-006-6668-8Search in Google Scholar

[29] Ohhata, Y., Shinoki, F., & Yoshida, S. (1979). Optical properties of r.f. reactive sputtered tin-doped In2O3 films. Thin Solid Films, 59, 255–261. DOI: 10.1016/0040-6090(79)90298-0. http://dx.doi.org/10.1016/0040-6090(79)90298-010.1016/0040-6090(79)90298-0Search in Google Scholar

[30] Peng, X. S., Meng, G. W., Zang, J., Wang, X. F., Wang, Y. W., Wang, C. Z., & Zhang, L. D. (2002). Synthesis and photoluminescence of single-crystalline In2O3 nanowires. Journal of Materials Chemistry, 12, 1602–1605. DOI: 10.1039/b111315a. http://dx.doi.org/10.1039/b111315a10.1039/b111315aSearch in Google Scholar

[31] Pinna, N., Grancharov, S., Beato, P., Bonville, P., Antonietti, M., & Niederberger, M. (2005). Magnetite nanocrystals: Nonaqueous synthesis, characterization and solubility. Chemistry of Materials, 17, 3044–3049. DOI: 10.1021/cm050060+. http://dx.doi.org/10.1021/cm050060+10.1021/cm050060+Search in Google Scholar

[32] Rumyantseva, M. N., Ivanov, V. K., Shaporev, A. S., Rudyi, Y. M., Yushchenko, V. V., Arbiol, J., & Gas’kov, A. M. (2009). Microstructure and sensing properties of nanocrystalline indium oxide prepared using hydrothermal treatment. Russian Journal of Inorganic Chemistry, 54, 163–171. DOI: 10.1134/s0036023609020016. http://dx.doi.org/10.1134/S003602360902001610.1134/S0036023609020016Search in Google Scholar

[33] Seo, W. S., Jo, H. H., Lee, K., & Park, J. T. (2003). Preparation and optical properties of highly crystalline, colloidal, and size-controlled indium oxide nanoparticles. Advanced Materials, 15, 795–797. DOI: 10.1002/adma.200304568. http://dx.doi.org/10.1002/adma.20030456810.1002/adma.200304568Search in Google Scholar

[34] Shigesato, Y., Takaki, S., & Haranoh, T. (1992). Electrical and structural properties of low resistivity tin-doped indium oxide films. Journal of Applied Physics, 71, 3356–3364. DOI: 10.1063/1.350931. http://dx.doi.org/10.1063/1.35093110.1063/1.350931Search in Google Scholar

[35] Souza, E. C. C., & Muccillo, E. N. S. (2006). Characterization of indium oxide nanoparticles prepared by soft chemistry route. In P. Vincenzini (Ed.), Advances in science and technology (pp. 248–253). Zürich, Switzerland: Trans Tech Publications. Search in Google Scholar

[36] Souza, E. C. C., Rey, J. F. Q., & Muccillo, E. N. S. (2009). Synthesis and characterization of spherical and narrow size distribution indium oxide nanoparticles. Applied Surface Science, 255, 3779–3783. DOI: 10.1016/j.apsusc.2008.10.039. http://dx.doi.org/10.1016/j.apsusc.2008.10.03910.1016/j.apsusc.2008.10.039Search in Google Scholar

[37] Steffes, H., Imawan, C., Sozbacher, F., & Obermeier, E. (2001). Enhancement of NO2 sensing properties of In2O3-based thin films using an Au or Ti surface modification. Sensors and Actuators B: Chemical, 78, 106–112. DOI: 10.1016/s0925-4005(01)00799-7. http://dx.doi.org/10.1016/S0925-4005(01)00799-710.1016/S0925-4005(01)00799-7Search in Google Scholar

[38] Takada, T., Suzuki, K., & Nakane, M. (1993). Highly sensitive ozone sensor. Sensors and Actuators B: Chemical, 13, 404–407. DOI: 10.1016/0925-4005(93)85412-4. http://dx.doi.org/10.1016/0925-4005(93)85412-410.1016/0925-4005(93)85412-4Search in Google Scholar

[39] Tanaka, S., & Esaka, T. (2001). Characterization of NOx sensor using doped In2O3. Journal of Materials Research, 16, 1389–1395. DOI: 10.1557/jmr.2001.0194. http://dx.doi.org/10.1557/JMR.2001.019410.1557/JMR.2001.0194Search in Google Scholar

[40] Tao, X. J., Sun, L., Li, Z. W., & Zhao, Y. B. (2010). Sideby- side In(OH)3 and In2O3 nanotubes: Synthesis and optical properties. Nanoscale Research Letters, 5, 383–388. DOI: 10.1007/s11671-009-9493-5. http://dx.doi.org/10.1007/s11671-009-9493-510.1007/s11671-009-9493-5Search in Google Scholar PubMed PubMed Central

[41] Tseng, T. T., & Tseng, W. J. (2009). Effect of polyvinylpyrrolidone on morphology and structure of In2O3 nanorods by hydrothermal synthesis. Ceramics International, 35, 2837–2844. DOI: 10.1016/j.ceramint.2009.03.028. http://dx.doi.org/10.1016/j.ceramint.2009.03.02810.1016/j.ceramint.2009.03.028Search in Google Scholar

[42] Xu, X. M., Zhao, P. L., Wang, D.W., Sun, P., You, L., Sun, Y. F., Liang, X. H., Liu, F. M., Chen, H., & Lu, G. Y. (2013). Preparation and gas sensing properties of hierarchical flowerlike In2O3 microspheres. Sensors and Actuators B: Chemical, 176, 405–412. DOI: 10.1016/j.snb.2012.10.091. http://dx.doi.org/10.1016/j.snb.2012.10.09110.1016/j.snb.2012.10.091Search in Google Scholar

[43] Yang, J., Lin, C. K., Wang, Z. L., & Lin, J. (2006). In(OH)3 and In2O3 nanorod bundles and spheres: Microemulsion mediated hydrothermal synthesis and luminescence properties. Inorganic Chemistry, 45, 8973–8979. DOI: 10.1021/ic060934+. http://dx.doi.org/10.1021/ic060934+10.1021/ic060934Search in Google Scholar

[44] Yang, J., Frost, R. L., & Martens, W. N. (2010). Thermogravimetric analysis and hot-stage Raman spectroscopy of cubic indium hydroxide. Journal of Thermal Analysis and Calorimetry, 100, 109–116. DOI: 10.1007/s10973-009-0554-x. http://dx.doi.org/10.1007/s10973-009-0554-x10.1007/s10973-009-0554-xSearch in Google Scholar

[45] Yang, J. J., Cheng, H. F., Martens, W. N., & Frost, R. L. (2011). Application of infrared emission spectroscopy to the thermal transition of indium hydroxide to indium oxide nanocubes. Applied Spectroscopy, 65, 113–118. DOI: 10.1366/10-06082. http://dx.doi.org/10.1366/10-0608210.1366/10-06082Search in Google Scholar PubMed

[46] Yin, W. Y., Su, J., Cao, M. H., Ni, C. Y., Cloutier, S. G., Huang, Z. G., Ma, X., Ren, L., Hu, C. W., & Wei, B. Q. (2009). In(OH)3 and In2O3 micro/nanostructures: Controllable NaOAc-assisted microemulsion synthesis and Raman properties. Journal of Physical Chemistry C, 113, 19493–19499. DOI: 10.1021/jp906328z. http://dx.doi.org/10.1021/jp906328z10.1021/jp906328zSearch in Google Scholar

[47] Zhang, Y. F., Li, J. Y., Li, Q., Zhu, L., Liu, X. D., Zhong, X. H., Meng, J., & Cao, X. Q. (2007). Preparation of In2O3 ceramic nanofibers by electrospinning and their optical properties. Scripta Materialia, 56, 409–412. DOI: 10.1016/j.scriptamat.2006.10.032. http://dx.doi.org/10.1016/j.scriptamat.2006.10.03210.1016/j.scriptamat.2006.10.032Search in Google Scholar

[48] Zhao, Y. B., Zhang, Z. J., Wu, Z. S., & Dang, H. X. (2004). Synthesis and characterization of single crystalline In2O3 nanocrystals via solution dispersion. Langmuir, 20, 27–29. DOI: 10.1021/la035212z. http://dx.doi.org/10.1021/la035212z10.1021/la035212zSearch in Google Scholar PubMed

[49] Zhou, H. J., Cai, W. P., & Zhang, L. (1999). Photoluminescence of indium-oxide nanoparticles dispersed within pores of mesoporous silica. Applied Physics Letters, 75, 495–497. DOI: 10.1063/1.124427. http://dx.doi.org/10.1063/1.12442710.1063/1.124427Search in Google Scholar

Published Online: 2014-4-15
Published in Print: 2014-8-1

© 2014 Institute of Chemistry, Slovak Academy of Sciences

Articles in the same Issue

  1. Recent advances in application of liquid-based micro-extraction: A review
  2. Determination of nitrites and nitrates in drinking water using capillary electrophoresis
  3. Comparison of digestion methods for determination of total phosphorus in river sediments
  4. Interdisciplinary study on pottery experimentally impregnated with wine
  5. Improvement in γ-decalactone production by Yarrowia sp. after genome shuffling
  6. Development of an effective extraction process for coenzyme Q10 from Artemia
  7. Effect of anions on the structure and catalytic properties of a La-doped Cu-Mn catalyst in the water-gas shift reaction
  8. Effect of apple pomace powder addition on farinographic properties of wheat dough and biscuits quality
  9. Influence of caffeine and temperature on corrosion-resistance of CoCrMo alloy
  10. Cetyltrimethylammonium bromide- and ethylene glycol-assisted preparation of mono-dispersed indium oxide nanoparticles using hydrothermal method
  11. Sol-gel synthesis, characterisation, and photocatalytic activity of porous spinel Co3O4 nanosheets
  12. Solvent-free synthesis of β-enamino ketones and esters catalysed by recyclable iron(III) triflate
  13. Potassium phthalimide-catalysed one-pot multi-component reaction for efficient synthesis of amino-benzochromenes in aqueous media
  14. Organocatalytic SOMO reactions of copper(I)-acetylide and alkylindium compounds with aldehydes
  15. Molecular modelling and quantitative structure-activity relationship studies of anatoxin-a and epibatidine derivatives with affinity to rodent nAChR receptors
  16. Efficient one-pot synthesis of 2-hydroxyethyl per-O-acetyl glycosides
  17. Properties of singlet- and triplet-excited states of hemicyanine dyes
Downloaded on 27.11.2025 from https://www.degruyterbrill.com/document/doi/10.2478/s11696-014-0543-9/pdf
Scroll to top button