Abstract
The ligands 2-(diphenylphosphino)benzyl-(2-thiophene)methylimine (V) and 2-(diphenylphosphino) benzyl-(2-thiophene)ethylimine (VI) were prepared from 2-(diphenylphosphino)benzaldehyde and thiophene amines with very good yields. An equimolar reaction of V and VI with either PdCl2(cod) (cod = cyclooctadiene) or PdClMe(cod) afforded palladium(II) complexes I–IV. The molecular structure of II was confirmed by X-ray crystallography. The coordination geometry around the palladium atom exhibited distorted square planar geometry at the palladium centre. Complexes I, II, and IV were evaluated as catalysts for Heck coupling reactions of iodobenzene with methyl acrylate under mild reaction conditions; 0.1 mole % catalyst, Et3N base, MeCN reflux for 8 h, 80°C; isolated yield on a 10 mmol scale with catalyst I (64 %), II (68 %), and IV (58 %). They all exhibited significant activities.
[1] Ahrens, S., Zeller, A., Taige, M., & Strassner, T. (2006). Extension of the alkane bridge in BisNHC-palladium-chloride complexes. Synthesis, structure, and catalytic activity. Organometallics, 25, 5409–5415. DOI: 10.1021/om060577a. http://dx.doi.org/10.1021/om060577a10.1021/om060577aSearch in Google Scholar
[2] Allen, F. H. (2002). The cambridge structural database: a quarter of a million crystal structures and rising. Acta Crystallographica B, 58, 380–388. DOI: 10.1107/s0108768102003890. http://dx.doi.org/10.1107/S010876810200389010.1107/S0108768102003890Search in Google Scholar
[3] Antonaroli, S., & Crociani, B. (1998). Preparation and reactions of palladium(0)-olefin complexes with iminophosphine ligands. Journal of Organometallic Chemistry, 560, 137–146. DOI: 10.1016/s0022-328x (98)00472-0. http://dx.doi.org/10.1016/S0022-328X(98)00472-010.1016/S0022-328X(98)00472-0Search in Google Scholar
[4] Baldwin, R. A., & Washburn, R. M. (1965). Organometallic azides. I. Preparation and reactions of diarylphosphinic azides 1a. Journal of Organic Chemistry, 30, 3860–3866. DOI: 10.1021/jo01022a063. http://dx.doi.org/10.1021/jo01022a06310.1021/jo01022a063Search in Google Scholar
[5] Beletskaya, I. P., & Cheprakov, A. V. (2000). The Heck reaction as a sharpening stone of palladium catalysis. Chemical Reviews, 100, 3009–3066. DOI: 10.1021/cr9903048. http://dx.doi.org/10.1021/cr990304810.1021/cr9903048Search in Google Scholar
[6] Böhm, V. P. W., & Herrmann, W. A. (2000). NNonaqueous ionic liquids: Superior reaction media for the catalytic Heck-vinylation of chloroarenes. Chemistry — A European Journal, 6, 1017–1025. DOI: 10.1002/(sici)1521-3765 (20000317)6:6〈1017::aid-chem1017〉3.0.co;2-8. http://dx.doi.org/10.1002/(SICI)1521-3765(20000317)6:6<1017::AID-CHEM1017>3.0.CO;2-810.1002/(SICI)1521-3765(20000317)6:6<1017::AID-CHEM1017>3.0.CO;2-8Search in Google Scholar
[7] Chen, C. S., & Yeh, W. Y. (2011). Synthesis of a new tetradentate bis(imino-phosphine) ligand and its complexation with copper(I) ions. Inorganica Chimica Acta, 370, 456–459. DOI: 10.1016/j.ica.2011.02.015. http://dx.doi.org/10.1016/j.ica.2011.02.01510.1016/j.ica.2011.02.015Search in Google Scholar
[8] Cui, Y. C., & Zhang, L. (2005). Polyvinyl chloride-polyethylene-polyamine supported palladium complexes as high efficient and recyclable catalysts for Heck reaction. Journal of Molecular Catalysis A: Chemistry, 237, 120–125. DOI: 10.1016/j.molcata.2005.04.050. http://dx.doi.org/10.1016/j.molcata.2005.04.05010.1016/j.molcata.2005.04.050Search in Google Scholar
[9] Doherty, S., Knight, J. G., Scanlam, T. H., Elsegood, M. R. J., & Clegg, W. (2002), Iminophosphines: synthesis, formation of 2,3-dihydro-1H-benzo[1,3]azaphosphol-3-ium salts and N-(pyridin-2-yl)-2-diphenylphosphinoylaniline, coordination chemistry and applications in platinum group catalyzed Suzuki coupling reactions and hydrosilylations. Journal of Organometallic Chemistry, 650, 231–248. DOI: 10.1016/s0022-328x(02)01203-2. http://dx.doi.org/10.1016/S0022-328X(02)01203-210.1016/S0022-328X(02)01203-2Search in Google Scholar
[10] Espinet, P., & Soulantica, K. (1999). Phosphine-pyridyl and related ligands in synthesis and catalysis. Coordination Chemistry Reviews, 193–195, 499–556. DOI: 10.1016/s0010-8545(99)00140-x. http://dx.doi.org/10.1016/S0010-8545(99)00140-X10.1016/S0010-8545(99)00140-XSearch in Google Scholar
[11] Farrugia, L. J. (1997). ORTEP-3 for Windows — a version of ORTEP-III with a Graphical User Interface (GUI). Journal of Applied Crystallography, 30, 565–566. DOI: 10.1107/s0021889897003117. http://dx.doi.org/10.1107/S002188989700311710.1107/S0021889897003117Search in Google Scholar
[12] Farrugia, L. J. (1999). WinGX suite for small-molecule singlecrystal crystallography. Journal of Applied Crystallography, 32, 837–838. DOI: 10.1107/s0021889899006020. http://dx.doi.org/10.1107/S002188989900602010.1107/S0021889899006020Search in Google Scholar
[13] Garralda, M. A. (2005). o-(Diphenylphosphino)benzaldehyde: a versatile ligand and a useful hemilabile ligand precursor. Comptes Rendus Chimie, 8, 1413–1420. DOI: 10.1016/j.crci.2005.03.009. http://dx.doi.org/10.1016/j.crci.2005.03.00910.1016/j.crci.2005.03.009Search in Google Scholar
[14] Grushin, V. V., & Alper, H. (1994). Transformations of chloroarenes, catalyzed by transition-metal complexes. Chemical Reviews, 94, 1047–1062. DOI: 10.1021/cr00028a008. http://dx.doi.org/10.1021/cr00028a00810.1021/cr00028a008Search in Google Scholar
[15] Herrmann, W. A., Brossmer, C., Öfele, K., Reisinger, C. P., Priermeier, T., Beller, M., & Fischer, H. (1995). Palladacycles as structurally defined catalysts for the heck olefination of chloro- and bromoarenes. Angewandte Chemie International Edition, 34, 1844–8148. DOI: 10.1002/anie.199518441. 10.1002/anie.199518441Search in Google Scholar
[16] Hoots, J. E., Rauchfuss, T. B., Wrobleski, D. A., & Knachel, H. C. (1982). Substituted triaryl phosphines. In J. P. Fackler (Ed.), Inorganic synthesis (Vol. 21, pp. 175–179). New York, NY, USA: Wiley. DOI: 10.1002/9780470132524. http://dx.doi.org/10.1002/9780470132524.ch3910.1002/9780470132524Search in Google Scholar
[17] Jeffrey, J. C., & Rauchfuss, T. B. (1979). Metal complexes of hemilabile ligands. Reactivity and structure of dichlorobis(o-(diphenylphosphino)anisole)ruthenium(II). Inorganic Chemistry, 18, 2658–2666. DOI: 10.1021/ic50200a004. 10.1021/ic50200a004Search in Google Scholar
[18] Marson, A., Ernsting, J. E., Lutz, M., Spek, A. L., van Leeuwen, P. W. N. M., & Kamer, P. C. J. (2009). A novel hemilabile calix[4], quinoline-based P,N-ligand: coordination chemistry and complex characterisation. Dalton Transactions, 2009, 621–633. DOI: 10.1039/b814469a. 10.1039/B814469ASearch in Google Scholar PubMed
[19] Mogorosi, M. M., Mahamo, T., Moss, J. R., Mapolie, S. F., Slootweg, J. C., Lammertsma, K., & Smith, G. S. (2011). Neutral palladium(II) complexes with P,N Schiff-base ligands: Synthesis, characterization and catalytic oligomerisation of ethylene. Journal of Organometallic Chemistry, 696, 3585–3592. DOI: 10.1016/j.jorganchem.2011.07.042. http://dx.doi.org/10.1016/j.jorganchem.2011.07.04210.1016/j.jorganchem.2011.07.042Search in Google Scholar
[20] Motswainyana, W. M., Ojwach, S. O., Onani, M. O., Iwuoha, E. I., & Darkwa, J. (2011). Novel hemi-labile pyridyl-imine palladium complexes: Synthesis, molecular structures and reactions with ethylene. Polyhedron, 30, 2574–2580. DOI: 10.1016/j.poly.2011.07.004. http://dx.doi.org/10.1016/j.poly.2011.07.00410.1016/j.poly.2011.07.004Search in Google Scholar
[21] Motswainyana, W. M., Onani, M. O., & Lalancette, R. A. (2012). Chlorido[2-({[2-(diphenylphosphanyl)benzylidene] amino}methyl)thiophene-κ 2N,P]methylpalladium(II). Acta Crystallographica E, 68, m339. DOI: 10.1107/s1600536812007295. http://dx.doi.org/10.1107/S160053681200729510.1107/S1600536812007295Search in Google Scholar
[22] Newkome, G. R. (1993). Pyridylphosphines. Chemical Reviews, 93, 2067–2089. DOI: 10.1021/cr00022a006. http://dx.doi.org/10.1021/cr00022a00610.1021/cr00022a006Search in Google Scholar
[23] Nobre, S. M., & Monteiro, A. L. (2009). Pd complexes of iminophosphine ligands: A homogeneous molecular catalyst for Suzuki-Miyaura cross-coupling reactions under mild conditions. Journal of Molecular Catalysis A: Chemical, 313, 65–73. DOI: 10.1016/j.molcata.2009.08.003. http://dx.doi.org/10.1016/j.molcata.2009.08.00310.1016/j.molcata.2009.08.003Search in Google Scholar
[24] Ojwach, S. O., Westman, G., & Darkwa, J. (2007). Substituted (pyridinyl)benzoazole palladium complexes: Synthesis and application as Heck coupling catalysts. Polyhedron, 26, 5544–5552. DOI: 10.1016/j.poly.2007.08.033. http://dx.doi.org/10.1016/j.poly.2007.08.03310.1016/j.poly.2007.08.033Search in Google Scholar
[25] Onani, M. O., Motswainyana, W. M., Iwuoha, E. I., Darkwa, J., & Lalancette, R. A. (2010). Chlorido{N-[2-(diphenylphosphanyl) benzylidene]-2-(2-thienyl)ethanamine-κ 2N,P} methylpalladium(II) dichloromethane hemisolvate. Acta Crystallographica E, 66, m688. DOI: 10.1107/s1600536810017824. http://dx.doi.org/10.1107/S160053681001782410.1107/S1600536810017824Search in Google Scholar
[26] Park, P. J. D., & Hendra, P. J. (1968). The vibration spectrum of trimethylphosphine-d9. Spectrochimica Acta Part A: Molecular Spectroscopy, 24, 2081–2087. DOI: 10.1016/0584-8539 (68)80268-5. http://dx.doi.org/10.1016/0584-8539(68)80268-510.1016/0584-8539(68)80268-5Search in Google Scholar
[27] Pelagatti, P., Carcelli, M., Costa, M., Ianelli, S., Pellizi, C., & Rogolino, D. (2005). Heck reaction catalyzed by pyridylimine palladium(0) and palladium(II) complexes. Journal of Molecular Catalysis A: Chemical, 226, 107–110. DOI: 10.1016/j.molcata.2004.09.049. http://dx.doi.org/10.1016/j.molcata.2004.09.04910.1016/j.molcata.2004.09.049Search in Google Scholar
[28] Reddy, K. R., Surekha, K., Lee, G. H., Peng, S.M., & Liu, S. T. (2000). Palladium(II) complexes with phosphorus-nitrogen mixed donors. Efficient catalysts for the Heck reaction. Organometallics, 19, 2637–2639. DOI: 10.1021/om000089h. http://dx.doi.org/10.1021/om000089h10.1021/om000089hSearch in Google Scholar
[29] Ruelke, R. E., Kaasjager, V. E., Wehman, P., Elsevier, C. J., van Leeuwen, P. W. N. M., & Vrieze, K. (1996). Stable palladium( 0), palladium(II), and platinum(II) complexes containing a new, multifunctional and hemilabile phosphino-iminopyridyl ligand: Synthesis, characterization, and reactivity. Organometallics, 15, 3022–3031. DOI: 10.1021/om9509047. http://dx.doi.org/10.1021/om950904710.1021/om9509047Search in Google Scholar
[30] Salo, E. V., & Guan, Z. (2003). Late-transition-metal complexes with bisazaferrocene ligands for ethylene oligomerization. Organometallics, 22, 5033–5046. DOI: 10.1021/om034051r. http://dx.doi.org/10.1021/om034051r10.1021/om034051rSearch in Google Scholar
[31] Scrivanti, A., Bertoldini, M., Matteoli, U., Beghetto, V., Antonaroli, S., Marini, A., & Crociani, B. (2005). Highly efficient Heck olefin arylation in the presence of iminophosphinepalladium(0) complexes. Journal of Molecular Catalysis A: Chemical, 235, 12–16. DOI: 10.1016/j.molcata.2004.12.007. http://dx.doi.org/10.1016/j.molcata.2004.12.00710.1016/j.molcata.2004.12.007Search in Google Scholar
[32] Sheldrick, G. M. (2008). A short history of SHELX. Acta Crystallographica A, 64, 112–122. DOI: 10.1107/s0108767307043930. http://dx.doi.org/10.1107/S010876730704393010.1107/S0108767307043930Search in Google Scholar
[33] Shirakawa, E., Yoshida, H., & Takaya, H. (1997). An iminophosphine-palladium catalyst for cross-coupling of aryl halides with organostannanes. Tetrahedron Letters, 38, 3759–3762. DOI: 10.1016/s0040-4039(97)00747-8. http://dx.doi.org/10.1016/S0040-4039(97)00747-810.1016/S0040-4039(97)00747-8Search in Google Scholar
[34] Smith, G. S., & Mapolie, S. F. (2004). Iminopyridyl-palladium dendritic catalyst precursors: evaluation in Heck reactions. Journal of Molecular Catalysis A: Chemical, 213, 187–192. DOI: 10.1016/j.molcata.2003.12.010. http://dx.doi.org/10.1016/j.molcata.2003.12.01010.1016/j.molcata.2003.12.010Search in Google Scholar
[35] Wiedermann, J., Mereiter, K., & Kirchner, K. (2006). Palladium imine and amine complexes derived from 2-thiophenecarboxaldehyde as catalysts for the Suzuki cross-coupling of aryl bromides. Journal of Molecular Catalysis A: Chemical, 257, 67–72. DOI: 10.1016/j.molcata.2006.04.009. http://dx.doi.org/10.1016/j.molcata.2006.04.00910.1016/j.molcata.2006.04.009Search in Google Scholar
© 2013 Institute of Chemistry, Slovak Academy of Sciences
Articles in the same Issue
- Kinetic analysis of cellulose pyrolysis: a short review
- Simultaneous determination of ciprofloxacin hydrochloride and hydrocortisone in ear drops by high performance liquid chromatography
- Inhibition effect of free ammonia and free nitrous acid on nitrite-oxidising bacteria during sludge liquor treatment: influence of feeding strategy
- Thermo-chemical properties of biomass from Posidonia oceanica
- Al(III) and Cu(II) simultaneous foam separation: Physicochemical problems
- Scale-adaptive simulation of liquid mixing in an agitated vessel equipped with eccentric HE 3 impeller
- Alkaline hydrogen peroxide pretreatment of energy crops for biogas production
- Synthesis, crystal structures, spectral, electrochemical and magnetic properties of di-µ-phenoxido-bridged dinuclear copper(II) complexes with N-salicylidene-2-hydroxybenzylamine derivatives: axial coordination effect of dimethyl sulphoxide molecule
- Hemilabile imino-phosphine palladium(II) complexes: synthesis, molecular structure, and evaluation in Heck reactions
- Structure and vibrational spectra of copper(II) 2-pyridylmethanolate tetrahydrate
- Synthesis and characterization of a silylated Brazilian clay mineral surface
- Nano-titanium oxide doped with gold, silver, and palladium — synthesis and structural characterization
- Synthesis and insecticidal activity of 6,8-dichloro-quinazoline derivatives containing a sulfide substructure
- Effect of extraction method on phenolic content and antioxidant activity of mistletoe extracts from Viscum album subsp. abietis
- Synthesis of melamine-formaldehyde resin functionalised with sulphonic groups and its catalytic activities
- Synthesis, characterization, and application of a new tripodal ligand for the preparation of LSCF(6482) perovskite
Articles in the same Issue
- Kinetic analysis of cellulose pyrolysis: a short review
- Simultaneous determination of ciprofloxacin hydrochloride and hydrocortisone in ear drops by high performance liquid chromatography
- Inhibition effect of free ammonia and free nitrous acid on nitrite-oxidising bacteria during sludge liquor treatment: influence of feeding strategy
- Thermo-chemical properties of biomass from Posidonia oceanica
- Al(III) and Cu(II) simultaneous foam separation: Physicochemical problems
- Scale-adaptive simulation of liquid mixing in an agitated vessel equipped with eccentric HE 3 impeller
- Alkaline hydrogen peroxide pretreatment of energy crops for biogas production
- Synthesis, crystal structures, spectral, electrochemical and magnetic properties of di-µ-phenoxido-bridged dinuclear copper(II) complexes with N-salicylidene-2-hydroxybenzylamine derivatives: axial coordination effect of dimethyl sulphoxide molecule
- Hemilabile imino-phosphine palladium(II) complexes: synthesis, molecular structure, and evaluation in Heck reactions
- Structure and vibrational spectra of copper(II) 2-pyridylmethanolate tetrahydrate
- Synthesis and characterization of a silylated Brazilian clay mineral surface
- Nano-titanium oxide doped with gold, silver, and palladium — synthesis and structural characterization
- Synthesis and insecticidal activity of 6,8-dichloro-quinazoline derivatives containing a sulfide substructure
- Effect of extraction method on phenolic content and antioxidant activity of mistletoe extracts from Viscum album subsp. abietis
- Synthesis of melamine-formaldehyde resin functionalised with sulphonic groups and its catalytic activities
- Synthesis, characterization, and application of a new tripodal ligand for the preparation of LSCF(6482) perovskite