Home Synthesis of melamine-formaldehyde resin functionalised with sulphonic groups and its catalytic activities
Article
Licensed
Unlicensed Requires Authentication

Synthesis of melamine-formaldehyde resin functionalised with sulphonic groups and its catalytic activities

  • Lin-Jun Shao EMAIL logo , Gui-Ying Xing and Chen-Ze Qi
Published/Copyright: March 12, 2014
Become an author with De Gruyter Brill

Abstract

Spherical melamine-formaldehyde resin (MFR) particles were synthesised using the condensation reaction of melamine and formaldehyde with PEG-2000 as an additive. After thermal treatment at 200°C and then sulphonation by chlorosulphuric acid, an MFR-supported strong acid catalyst (SMFR) was prepared with an acidity of 3.23 mmol g−1. This new acid catalyst was evaluated in the reactions of esterification and acetalisation, with the results indicating that this novel acid catalyst was highly efficient in the traditional acid-catalysed reaction. Its high activity, stability and reusability give it great potential for “green” chemical processes.

[1] Adam, F., Batagarawa, M. S., Hello, K. M., & AI-Juaid, S. S. (2012). One-step synthesis of solid sulfonic acid catalyst and its application in the acetalization of glycerol: Crystal structure of cis-5-hydroxy-2-phenyl-1,3-dioxane trimer. Chemical Papers, 66, 1048–1058. DOI: 10.2478/s11696-012-0203-x. http://dx.doi.org/10.2478/s11696-012-0203-x10.2478/s11696-012-0203-xSearch in Google Scholar

[2] Anastas, P. T., & Kirchhoff, M. M. (2002). Origins, current status and future challenges of green chemistry. Accounts of Chemical Research, 35, 686–694. DOI: 10.1021/ar010065m. http://dx.doi.org/10.1021/ar010065m10.1021/ar010065mSearch in Google Scholar

[3] Baytekin, M. T. (2012). Monoliths from step-growth polymerization reactions. Umeå, Sweden: Umeå University. Search in Google Scholar

[4] Bhorodwaj, S. K., & Dutta, D. K. (2011). Activated clay supported heteropoly acid catalysts for esterification of acetic acid with butanol. Applied Clay Science, 53, 347–352. DOI: 10.1016/j.clay.2011.01.019. http://dx.doi.org/10.1016/j.clay.2011.01.01910.1016/j.clay.2011.01.019Search in Google Scholar

[5] Brooker, L. G., & Mungin, H. (1983). US Patent No. 4,405,690. Washington, DC, USA: US Patent Office. Search in Google Scholar

[6] Chehardoli, G., Zolfigol, M. A., Azimi, S. B., & Alizadeh, E. (2011). Melamine-(H2SO4)3 and PVP-(H2SO4)m as solid acids: Synthesis and application in the first mono- and dinitration of bisphenol A and other phenols. Chinese Chemical Letters, 22, 827–830. DOI: 10.1016/j.cclet.2011.01.021. http://dx.doi.org/10.1016/j.cclet.2011.01.02110.1016/j.cclet.2011.01.021Search in Google Scholar

[7] Choi, S. G., Moon, Y. M., & Jung, H. K. (2010). Luminescent properties of PEG-added nanocrystalline YVO4:Eu3+ phosphor prepared by a hydrothermal method. Journal of Luminescence, 130, 549–553. DOI: 10.1016/j.jlumin.2009.10.029. http://dx.doi.org/10.1016/j.jlumin.2009.10.02910.1016/j.jlumin.2009.10.029Search in Google Scholar

[8] Clark, J. H. (2002). Solid acids for green chemistry. Accounts of Chemical Research, 35, 791–797. DOI: 10.1021/ar010072a. http://dx.doi.org/10.1021/ar010072a10.1021/ar010072aSearch in Google Scholar

[9] DeSimone, J. M. (2002) Practical approaches to green solvents. Science, 297, 799–803. DOI: 10.1126/science.1069622. http://dx.doi.org/10.1126/science.106962210.1126/science.1069622Search in Google Scholar

[10] Gözüak, F., Köseoğlu, Y., Baykal, A., & Kavas, H. (2009). Synthesis and characterization of Cox Zn1−x Fe2O4 magnetic nanoparticles via a PEG-assisted route. Journal of Magnetism and Magnetic Materials, 321, 2170–2177. DOI: 10.1016/j.jmmm.2009.01.008. http://dx.doi.org/10.1016/j.jmmm.2009.01.00810.1016/j.jmmm.2009.01.008Search in Google Scholar

[11] Hang, Z. S., Tan, L. H., Gao, X. M., Ju, F. Y., Ying, S. J., & Xu, F. M. (2011). Preparation of melamine microfibers by reaction electrospinning. Materials Letters, 65, 1079–1081. DOI: 10.1016/j.matlet.2011.01.010. http://dx.doi.org/10.1016/j.matlet.2011.01.01010.1016/j.matlet.2011.01.010Search in Google Scholar

[12] Ji, S., Crews, G. M., Pittman, C. U., Jr., Wang, Y., & Ran, R. (1996). Ammeline-melamine-formaldehyde resins. Preparation and properties. Journal of Polymer Science Part A: Polymer Chemistry, 34, 2543–2561. DOI: 10.1002/(sici)1099-0518(19960930)34:13〈2543::aid-pola1〉3.0.co;2-t. http://dx.doi.org/10.1002/(SICI)1099-0518(19960930)34:13<2543::AID-POLA1>3.0.CO;2-T10.1002/(SICI)1099-0518(19960930)34:13<2543::AID-POLA1>3.0.CO;2-TSearch in Google Scholar

[13] Jothiramalingam, R., & Wang, M. K. (2009). Review of recent developments in solid acid, base and enzyme catalysts (heterogeneous) for biodiesel production via transesterification. Industrial & Engineering Chemistry Research, 48, 6162–6172. DOI: 10.1021/ie801872t. http://dx.doi.org/10.1021/ie801872t10.1021/ie801872tSearch in Google Scholar

[14] Liang, X. Z., Xiao, H. Q., Shen, Y. M., & Qi, C. Z. (2010). Onestep synthesis of novel sulfuric acid groups’ functionalized carbon via hydrothermal carbonization. Materials Letters, 64, 953–955. DOI: 10.1016/j.matlet.2010.01.070. http://dx.doi.org/10.1016/j.matlet.2010.01.07010.1016/j.matlet.2010.01.070Search in Google Scholar

[15] Margelefsky, E. L., Bendjériou, A., Zeidan, R. K., Dufaud, V., & Davis, M. E. (2008). Nanoscale organization of thiol and arylsulfonic acid on silica leads to a highly active and selective bifunctional, heterogeneous catalyst. Journal of the American Chemical Society, 130, 13442–13349. DOI: 10.1021/ja804082m. http://dx.doi.org/10.1021/ja804082m10.1021/ja804082mSearch in Google Scholar PubMed

[16] Peters, T. A., Benes, N. E., Holmen, A., & Keurentjes, J. T. F. (2006). Comparison of commercial solid acid catalysts for the esterification of acetic acid with butanol. Applied Catalysis A: General, 297, 182–188. DOI: 10.1016/j.apcata.2005.09.006. http://dx.doi.org/10.1016/j.apcata.2005.09.00610.1016/j.apcata.2005.09.006Search in Google Scholar

[17] Qiu, X. Q., Yi, C. H., Yang, D. J., & Ouyang, X. P. (2002). Synthesis of sulfonated melamine urea formaldehyde resins. Modern Chemical Industry, 22, 24–27. Search in Google Scholar

[18] Rezaei, R., & Karami, M. (2011). Microwave promoted rapid dehydration of aldoximes to nitriles using melamine-formaldehyde resin supported sulphuric acid in dry media. Chinese Chemical Letters, 22, 815–818. DOI: 10.1016/j.cclet.2011.01.008. http://dx.doi.org/10.1016/j.cclet.2011.01.00810.1016/j.cclet.2011.01.008Search in Google Scholar

[19] Sabitha, G., Prasad, M. N., Ramesh, M., & Yadav, J. S. (2010). Silica sulfuric acid as a reusable heterogeneous catalyst for the diastereoselective Mukaiyama aldol reaction of 2-(trimethylsilyloxy)furan: Facile synthesis of γ-butenolides. Monatshefte für Chemie, 141, 1245–1248. DOI: 10.1007/s00706-010-0388-z. http://dx.doi.org/10.1007/s00706-010-0388-z10.1007/s00706-010-0388-zSearch in Google Scholar

[20] Shao, L. J., Du, Y. J., Xing, G. Y., Lv, W. X., Liang, X. Z., & Qi, C. Z. (2012a). Polyacrylonitrile fiber mat supported solid acid catalyst for acetalization. Monatshefte für Chemie, 143, 1199–1203. DOI: 10.1007/s00706-011-0706-0. http://dx.doi.org/10.1007/s00706-011-0706-010.1007/s00706-011-0706-0Search in Google Scholar

[21] Shao, L. J., Xing, G. Y., He, L. Y., Chen, J., Xie, H. Q., Liang, X. Z., & Qi, C. Z. (2012b). Sulfonic groups functionalized preoxidated polyacrylonitrile nanofibers and its catalytic applications. Applied Catalysis A: General, 443–444, 133–137. DOI: 10.1016/j.apcata.2012.07.034. http://dx.doi.org/10.1016/j.apcata.2012.07.03410.1016/j.apcata.2012.07.034Search in Google Scholar

[22] Shaterian, H. R., & Rigi, F. (2012). Acetalization of carbonyl compounds as pentaerythritol diacetals and diketals in the presence of cellulose sulfuric acid as an efficient, biodegradable and reusable catalyst. Chinese Journal of Chemistry, 30, 695–698. DOI: 10.1002/cjoc.201280002. http://dx.doi.org/10.1002/cjoc.20128000210.1002/cjoc.201280002Search in Google Scholar

[23] Suganuma, S., Nakajima, K., Kitano, M., Kato, H., Tamura, A., Kondo, H., Yanagawa, S., Hayashi, S., & Hara, M. (2011). SO3H-bearing mesoporous carbon with highly selective catalysis. Microporous and Mesoporous Materials, 143, 443–450. DOI: 10.1016/j.micromeso.2011.03.028. http://dx.doi.org/10.1016/j.micromeso.2011.03.02810.1016/j.micromeso.2011.03.028Search in Google Scholar

[24] Tutin, K. K. (1998). US Patent No. 5,710,239. Washington, DC, USA: US Patent Office. Search in Google Scholar

[25] Xiao, H. Q., Guo, Y. X., Liang, X. Z., & Qi, C. Z. (2010). One-step synthesis of a novel carbon-based strong acid catalyst through hydrothermal carbonization. Monatshefte für Chemie, 141, 929–932. DOI: 10.1007/s00706-010-0332-2. http://dx.doi.org/10.1007/s00706-010-0332-210.1007/s00706-010-0332-2Search in Google Scholar

[26] Yan, A.G., Liu, X. H., Qiu, G. Z., Wu, H.Y., Yi, R., Zhang, N., & Xu, J. (2008). Solvothermal synthesis and characterization of size-controlled Fe3O4 nanoparticles. Journal of Alloys and Compounds, 458, 487–491. DOI: 10.1016/j.jallcom.2007.04.019. http://dx.doi.org/10.1016/j.jallcom.2007.04.01910.1016/j.jallcom.2007.04.019Search in Google Scholar

Published Online: 2014-3-12
Published in Print: 2014-7-1

© 2013 Institute of Chemistry, Slovak Academy of Sciences

Articles in the same Issue

  1. Kinetic analysis of cellulose pyrolysis: a short review
  2. Simultaneous determination of ciprofloxacin hydrochloride and hydrocortisone in ear drops by high performance liquid chromatography
  3. Inhibition effect of free ammonia and free nitrous acid on nitrite-oxidising bacteria during sludge liquor treatment: influence of feeding strategy
  4. Thermo-chemical properties of biomass from Posidonia oceanica
  5. Al(III) and Cu(II) simultaneous foam separation: Physicochemical problems
  6. Scale-adaptive simulation of liquid mixing in an agitated vessel equipped with eccentric HE 3 impeller
  7. Alkaline hydrogen peroxide pretreatment of energy crops for biogas production
  8. Synthesis, crystal structures, spectral, electrochemical and magnetic properties of di-µ-phenoxido-bridged dinuclear copper(II) complexes with N-salicylidene-2-hydroxybenzylamine derivatives: axial coordination effect of dimethyl sulphoxide molecule
  9. Hemilabile imino-phosphine palladium(II) complexes: synthesis, molecular structure, and evaluation in Heck reactions
  10. Structure and vibrational spectra of copper(II) 2-pyridylmethanolate tetrahydrate
  11. Synthesis and characterization of a silylated Brazilian clay mineral surface
  12. Nano-titanium oxide doped with gold, silver, and palladium — synthesis and structural characterization
  13. Synthesis and insecticidal activity of 6,8-dichloro-quinazoline derivatives containing a sulfide substructure
  14. Effect of extraction method on phenolic content and antioxidant activity of mistletoe extracts from Viscum album subsp. abietis
  15. Synthesis of melamine-formaldehyde resin functionalised with sulphonic groups and its catalytic activities
  16. Synthesis, characterization, and application of a new tripodal ligand for the preparation of LSCF(6482) perovskite
Downloaded on 26.11.2025 from https://www.degruyterbrill.com/document/doi/10.2478/s11696-013-0527-1/pdf
Scroll to top button