Abstract
Clay mineral containing kaolinite, illite and montmorillonite was organofunctionalized with silylating agents: (3-aminopropyl)triethoxysilane, 3-[2-(2-aminoethylamino)ethylamino]propyl-trimethoxysilane and (3-mercaptopropyl)trimethoxy-silane, to yield three hybrids labelled Clay1, Clay2 and Clay3, respectively. These solids were characterized using elemental analysis, thermogravimetry, X-ray diffractometry, infrared spectroscopy, scanning electron micrograph, and 29Si and 27Al solid state NMR. Immobilized quantities of the organic groups were 0.66 mmol g−1, 0.48 mmol g−1 and 0.88 mmol g−1 for Clayx (x = 1–3), respectively. X-ray diffraction patterns confirmed the immobilization of silanes onto the surface without changes in the textural properties of the clay mineral as noted from the SEM images. Spectroscopic measurements were in agreement with the covalent bonding between the silanes and the hydroxyl groups deposited on the surface. The new hybrids were utilized as adsorbents of cobalt in aqueous solution, with retention values of 0.78 mmol g−1, 1.1 mmol g−1 and 0.70 mmol g−1 for Clayx (x = 1–3), respectively.
[1] Alkan, M., Tekin, G., & Namli, H. (2005). FTIR and zeta potential measurements of sepiolite treated with some organosilanes. Microporous and Mesoporous Materials, 84, 75–83. DOI: 10.1016/j.micromeso.2005.05.016. http://dx.doi.org/10.1016/j.micromeso.2005.05.01610.1016/j.micromeso.2005.05.016Search in Google Scholar
[2] Balek, V., & Murat, M. (1996). The emanation thermal analysis of kaolinite clay minerals. Thermochimica Acta, 282–283, 385–397. DOI: 10.1016/0040-6031(96)02886-9. http://dx.doi.org/10.1016/0040-6031(96)02886-910.1016/0040-6031(96)02886-9Search in Google Scholar
[3] Bergaya, F., Theng, B. K. G., & Lagaly, G. (2006). Handbook of clay science. Oxford, UK: Elsevier. Search in Google Scholar
[4] Brindely, G. W., & Brown, G. (1980). Crystal structures of clay minerals and their X-ray identification. London, UK: Mineralogical Society. 10.1180/mono-5Search in Google Scholar
[5] da Silva, O. G., da Fonseca, M. G., & Arakaki, L. N. H. (2007). Silylated calcium phosphates and their new behavior for copper retention from aqueous solution. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 301, 376–381. DOI: 10.1016/j.colsurfa.2006.12.072. http://dx.doi.org/10.1016/j.colsurfa.2006.12.07210.1016/j.colsurfa.2006.12.072Search in Google Scholar
[6] de Faria, A. L., Airoldi, C., Doro, F. G., Fonseca, M. G., & Assis, M. D. (2004). Anchored ironporphyrins — the role of talcaminofunctionalyzed phyllosilicates in the catalysis of oxidation of alkanes and alkenes. Applied Catalysis A: General, 268, 217–226. DOI: 10.1016/j.apcata.2004.03.035. http://dx.doi.org/10.1016/j.apcata.2004.03.03510.1016/j.apcata.2004.03.035Search in Google Scholar
[7] El-Nahhal, I. M., & El-Ashgar, N. M. (2007). A review on polysiloxane-immobilized ligand systems: Synthesis, characterization and applications. Journal of Organometallic Chemistry, 692, 2861–2886. DOI: 10.1016/j.jorganchem.2007.03.009. http://dx.doi.org/10.1016/j.jorganchem.2007.03.00910.1016/j.jorganchem.2007.03.009Search in Google Scholar
[8] Fonseca, M. G., Oliveira, A. S., & Airoldi, C. (2001). Silylating agents grafted onto silica derived from leached chrysotile. Journal of Colloid and Interface Science, 240, 533–538. DOI: 10.1006/jcis.2001.7663. http://dx.doi.org/10.1006/jcis.2001.766310.1006/jcis.2001.7663Search in Google Scholar PubMed
[9] Frost, R. L., & Mendelovici, E. (2006). Modification of fibrous silicates surfaces with organic derivatives: An infrared spectroscopic study. Journal of Colloid and Interface Science, 294, 47–52. DOI: 10.1016/j.jcis.2005.07.014. http://dx.doi.org/10.1016/j.jcis.2005.07.01410.1016/j.jcis.2005.07.014Search in Google Scholar PubMed
[10] Fujita, I., Kuroda, K., & Ogawa, M. (2005). Adsorption of alcohols from aqueous solutions into a layered silicate modified with octyltrichlorosilane. Chemistry of Materials, 17, 3717–3722. DOI: 10.1021/cm048023q. http://dx.doi.org/10.1021/cm048023q10.1021/cm048023qSearch in Google Scholar
[11] Gallégo, J. C., Jaber, M., Miehé-Brendlé, J., & Marichal, C. (2008). Synthesis of new lamellar inorganic-organic talc like hybrids. New Journal of Chemistry, 32, 407–412. DOI: 10.1039/b713004j. http://dx.doi.org/10.1039/b713004j10.1039/B713004JSearch in Google Scholar
[12] Ha, S. R., Rhee, K. Y., Kim, H. C., & Kim, J. T. (2008). Fracture performance of clay/epoxy nanocomposites with clay surface-modified using 3-aminopropyltriethoxysilane. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 313–314, 112–115. DOI: 10.1016/j.colsurfa.2007.04.082. http://dx.doi.org/10.1016/j.colsurfa.2007.04.08210.1016/j.colsurfa.2007.04.082Search in Google Scholar
[13] He, H. P., Duchet, J., Galy, J., & Gerard, J. F. (2005). Grafting of swelling clay materials with 3-aminopropyltriethoxysilane. Journal of Colloid and Interface Science, 288, 171–176. DOI: 10.1016/j.jcis.2005.02.092. http://dx.doi.org/10.1016/j.jcis.2005.02.09210.1016/j.jcis.2005.02.092Search in Google Scholar PubMed
[14] He, H. P., Tao, Q., Zhu, J. X., Yuan, P., Shen, W., & Yang, S. Q. (2013). Silylation of clay mineral surfaces. Applied Clay Science, 71, 15–20. DOI: 10.1016/j.clay.2012.09.028. http://dx.doi.org/10.1016/j.clay.2012.09.02810.1016/j.clay.2012.09.028Search in Google Scholar
[15] Hedley, C. B., Yuan, G., & Theng, B. K. G. (2007). Thermal analysis of montmorillonites modified with quaternary phosphonium and ammonium surfactants. Applied Clay Science, 35, 180–188. DOI: 10.1016/j.clay.2006.09.005. http://dx.doi.org/10.1016/j.clay.2006.09.00510.1016/j.clay.2006.09.005Search in Google Scholar
[16] Hermosín, M. C., & Cornejo, J. (1986). Methylation of sepiolite and palygorskite with diazomethane. Clays and Clay Minerals, 34, 591–596. DOI: 10.1346/ccmn.1986.0340514. http://dx.doi.org/10.1346/CCMN.1986.034051410.1346/CCMN.1986.0340514Search in Google Scholar
[17] Herrera, N. N., Letoffe, J. M., Reymond, J. P., & Bourgeat-Lami, E. (2005). Silylation of laponite clay particles with monofunctional and trifunctional vinyl alkoxysilanes. Journal of Materials Chemistry, 15, 863–871. DOI: 10.1039/b415618h. http://dx.doi.org/10.1039/b415618h10.1039/b415618hSearch in Google Scholar
[18] Ian, P. B., Blitz, J. P., Gun’ko, V. M., & Sheeran, D. J. (2007). Functionalized silicas: Structural characteristics and adsorption of Cu(II) and Pb(II). Colloids and Surface A, 307, 83–92. DOI: 10.1016/j.colsurfa.2007.05.016. 10.1016/j.colsurfa.2007.05.016Search in Google Scholar
[19] Ide, Y., & Ogawa, M. (2007). Interlayer modification of a layered titanate with two kinds of organic functional units for molecule-specific adsorption. Angewandte Chemie International Edition, 46, 8449–8451. DOI: 10.1002/anie.200702360. http://dx.doi.org/10.1002/anie.20070236010.1002/anie.200702360Search in Google Scholar PubMed
[20] Ishii, R., Nakatsuji, M., & Ooi, K. (2005). Preparation of highly porous silica nanocomposites from clay mineral: A new approach using pillaring method combined with selective leaching. Microporous and Mesoporous Materials, 79, 111–119. DOI: 10.1016/j.micromeso.2004.10.033. http://dx.doi.org/10.1016/j.micromeso.2004.10.03310.1016/j.micromeso.2004.10.033Search in Google Scholar
[21] Itagaki, T., & Kuroda, K. (2003). Organic modification of the interlayer surface of kaolinite with propanediols by transesterification. Journal of Material Chemistry, 13, 1064–1068. DOI: 10.1039/b211844k. http://dx.doi.org/10.1039/b211844k10.1039/b211844kSearch in Google Scholar
[22] Jaber, M., Miehe-Brendle, J., & Le Dred, R. (2002). Mercaptopropyl Al-Mg phyllosilicate: Synthesis and characterization by XRD, IR and NMR. Chemistry Letters, 31, 954–955. DOI: 10.1246/cl.2002.954. http://dx.doi.org/10.1246/cl.2002.95410.1246/cl.2002.954Search in Google Scholar
[23] Lee, S. M., & Tiwari, D. (2012). Organo and inorgano-organomodified clays in the remediation of aqueous solutions: An overview. Applied Clay Science, 59–60, 84–102. DOI: 10.1016/j.clay.2012.02.006. http://dx.doi.org/10.1016/j.clay.2012.02.00610.1016/j.clay.2012.02.006Search in Google Scholar
[24] Lipsicas, M., Raythatha, R. H., Pinnavaia, T. J., Johnson, I. D., Giese, R. F., Jr., Costanzo, P. M., & Robert, J. L. (1984). Sil icon and aluminium site distributions in 2: 1 layered silicate clays. Nature, 309, 604–607. DOI: 10.1038/309604a0. http://dx.doi.org/10.1038/309604a010.1038/309604a0Search in Google Scholar
[25] Moore, D. M., & Reynolds, R. C., Jr. (1997). X-Ray diffraction and the identification and analysis of clay minerals. Oxford, UK: Oxford University Press. Search in Google Scholar
[26] Murakami, J., Itagaki, T., & Kuroda, K. (2004). Synthesis of kaolinite-organic nanohybrids with butanediols. Solid State Ionics, 172, 279–284. DOI: 10.1016/j.ssi.2004.02.048. http://dx.doi.org/10.1016/j.ssi.2004.02.04810.1016/j.ssi.2004.02.048Search in Google Scholar
[27] Ogawa, M., Okutomo, S., & Kuroda, K. (1998). Control of interlayer microstructures of a layered silicate by surface modification with organochlorosilanes. Journal of the American Chemical Society, 120, 7361–7362. DOI: 10.1021/ja981055s. http://dx.doi.org/10.1021/ja981055s10.1021/ja981055sSearch in Google Scholar
[28] Piscitelli, F., Posocco, P., Toth, R., Fermeglia, M., Pricl, S., Mensitieri, G., & Lavorgna, M. (2010). Sodium montmorillonite silylation: Unexpected effect of the aminosilane chain length. Journal of Colloid and Interface Science, 351, 108–115. DOI: 10.1016/j.jcis.2010.07.059. http://dx.doi.org/10.1016/j.jcis.2010.07.05910.1016/j.jcis.2010.07.059Search in Google Scholar PubMed
[29] Rocha, J. (1999). Single and triple-quantum 27Al MAS NMR study of the thermal transformation of kaolinite. The Journal of Physical Chemistry B, 103, 9801–9804. DOI: 10.1021/jp991516b. http://dx.doi.org/10.1021/jp991516b10.1021/jp991516bSearch in Google Scholar
[30] Ruiz-Hitzky, E., & Rojo, J. M. (1980). Intracrystalline grafting on layer silicic acids. Nature, 287, 28–30. DOI: 10.1038/2870 28a0. http://dx.doi.org/10.1038/287028a010.1038/2870Search in Google Scholar PubMed
[31] Ruiz-Hitzky, E. (2004). Organic-inorganic materials: From intercalation chemistry to devices. In P. Gómez-Romero, & C. Sánchez (Eds.), Functional hybrid materials (pp. 15–49). Weinheim, Germany: Wiley. DOI: 10.1002/3527602372.ch2. 10.1002/3527602372.ch2Search in Google Scholar
[32] Schroeder, P. A. (1993). A chemical, XRD and 27A1 MAS NMR investigation of miocene gulf coast shales with application to understanding illite/smectite crystal-chemistry. Clays and Clay Minerals, 41, 668–679. DOI: 10.1346/ccmn.1993.0410605. http://dx.doi.org/10.1346/CCMN.1993.041060510.1346/CCMN.1993.0410605Search in Google Scholar
[33] Shanmugharaj, A. M., Rhee, K. Y., & Ryu, S. H. (2006). Influence of dispersing medium on grafting of aminopropyltriethoxysilane in swelling clay materials. Journal of Colloid and Interface Science, 298, 854–859. DOI: 10.1016/j.jcis.2005.12.049. http://dx.doi.org/10.1016/j.jcis.2005.12.04910.1016/j.jcis.2005.12.049Search in Google Scholar PubMed
[34] Sindorf, D. W., & Maciel, G. E. (1983). Solid-state NMR studies of the reactions of silica surfaces with polyfunctional chloromethylsilanes and ethoxymethylsilanes. Journal of the American Chemical Society, 105, 3767–3776. DOI: 10.1021/ja00350a003. http://dx.doi.org/10.1021/ja00350a00310.1021/ja00350a003Search in Google Scholar
[35] Su, L., Tao, Q., He, H. P., Zhu, J. X., Yuan, P., & Zhu, R. L. (2013). Silylation of montmorillonite surfaces: Dependence on solvent nature. Journal of Colloid and Interface Science, 391, 16–20. DOI: 10.1016/j.jcis.2012.08.077. http://dx.doi.org/10.1016/j.jcis.2012.08.07710.1016/j.jcis.2012.08.077Search in Google Scholar PubMed
[36] Tyagi, B., Chudasama, C. D., & Jasra, R. V. (2006). Determination of structural modification in acid activated montmorillonite clay by FT-IR spectroscopy. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 64, 273–278. DOI: 10.1016/j.saa.2005.07.018. http://dx.doi.org/10.1016/j.saa.2005.07.01810.1016/j.saa.2005.07.018Search in Google Scholar PubMed
[37] van der Marel, H. W., & Beutelspacher, H. (1976). Atlas of infrared spectroscopy of clay minerals and their admixtures. New York, NY, USA: Elsevier. Search in Google Scholar
[38] Wang, S. F., Lin, M. L., Shieh, Y. N., Wang, Y. R., & Wang, S. J. (2007). Organic modification of synthesized clay-magadiite. Ceramics International, 33, 681–685. DOI: 10.1016/j.ceramint.2005.12.005. http://dx.doi.org/10.1016/j.ceramint.2005.12.00510.1016/j.ceramint.2005.12.005Search in Google Scholar
[39] Wheeler, P. A., Wang, J. Z., Baker, J., & Mathias, L. J. (2005). Synthesis and characterization of covalently functionalized laponite clay. Chemistry of Materials, 17, 3012–3018. DOI: 10.1021/cm050306a. http://dx.doi.org/10.1021/cm050306a10.1021/cm050306aSearch in Google Scholar
[40] Xue, S. Q., Reinholdt, M., & Pinnavaia, T. J. (2006). Palygorskite as an epoxy polymer reinforcement agent. Polymer, 47, 3344–3350. DOI: 10.1016/j.polymer.2006.03.036. http://dx.doi.org/10.1016/j.polymer.2006.03.03610.1016/j.polymer.2006.03.036Search in Google Scholar
[41] Xue, A. L., Zhou, S. Y., Zhao, Y. J., Lu, X. P., & Han, P. F. (2010). Adsorption of reactive dyes from aqueous solution by silylated palygorskite. Applied Clay Science, 48, 638–640. DOI: 10.1016/j.clay.2010.03.011. http://dx.doi.org/10.1016/j.clay.2010.03.01110.1016/j.clay.2010.03.011Search in Google Scholar
[42] Zhang, B., Li, Y. F., Pan, X. B., Jia, X., & Wang, X. L. (2007). Intercalation of acrylic acid and sodium acrylate into kaolinite and their in situ polymerization. Journal of Physics and Chemistry of Solids, 68, 135–142. DOI: 10.1016/j.jpcs.2006.09.020. http://dx.doi.org/10.1016/j.jpcs.2006.09.02010.1016/j.jpcs.2006.09.020Search in Google Scholar
[43] Zhu, L. H., Tian, S. L., Zhu, J. X., & Shi, Y. (2007). Silylated pillared clay (SPILC): A novel bentonite-based inorganoorgano composite sorbent synthesized by integration of pillaring and silylation. Journal of Colloid and Interface Science, 315, 191–199. DOI: 10.1016/j.jcis.2007.06.053. http://dx.doi.org/10.1016/j.jcis.2007.06.05310.1016/j.jcis.2007.06.053Search in Google Scholar PubMed
© 2013 Institute of Chemistry, Slovak Academy of Sciences
Articles in the same Issue
- Kinetic analysis of cellulose pyrolysis: a short review
- Simultaneous determination of ciprofloxacin hydrochloride and hydrocortisone in ear drops by high performance liquid chromatography
- Inhibition effect of free ammonia and free nitrous acid on nitrite-oxidising bacteria during sludge liquor treatment: influence of feeding strategy
- Thermo-chemical properties of biomass from Posidonia oceanica
- Al(III) and Cu(II) simultaneous foam separation: Physicochemical problems
- Scale-adaptive simulation of liquid mixing in an agitated vessel equipped with eccentric HE 3 impeller
- Alkaline hydrogen peroxide pretreatment of energy crops for biogas production
- Synthesis, crystal structures, spectral, electrochemical and magnetic properties of di-µ-phenoxido-bridged dinuclear copper(II) complexes with N-salicylidene-2-hydroxybenzylamine derivatives: axial coordination effect of dimethyl sulphoxide molecule
- Hemilabile imino-phosphine palladium(II) complexes: synthesis, molecular structure, and evaluation in Heck reactions
- Structure and vibrational spectra of copper(II) 2-pyridylmethanolate tetrahydrate
- Synthesis and characterization of a silylated Brazilian clay mineral surface
- Nano-titanium oxide doped with gold, silver, and palladium — synthesis and structural characterization
- Synthesis and insecticidal activity of 6,8-dichloro-quinazoline derivatives containing a sulfide substructure
- Effect of extraction method on phenolic content and antioxidant activity of mistletoe extracts from Viscum album subsp. abietis
- Synthesis of melamine-formaldehyde resin functionalised with sulphonic groups and its catalytic activities
- Synthesis, characterization, and application of a new tripodal ligand for the preparation of LSCF(6482) perovskite
Articles in the same Issue
- Kinetic analysis of cellulose pyrolysis: a short review
- Simultaneous determination of ciprofloxacin hydrochloride and hydrocortisone in ear drops by high performance liquid chromatography
- Inhibition effect of free ammonia and free nitrous acid on nitrite-oxidising bacteria during sludge liquor treatment: influence of feeding strategy
- Thermo-chemical properties of biomass from Posidonia oceanica
- Al(III) and Cu(II) simultaneous foam separation: Physicochemical problems
- Scale-adaptive simulation of liquid mixing in an agitated vessel equipped with eccentric HE 3 impeller
- Alkaline hydrogen peroxide pretreatment of energy crops for biogas production
- Synthesis, crystal structures, spectral, electrochemical and magnetic properties of di-µ-phenoxido-bridged dinuclear copper(II) complexes with N-salicylidene-2-hydroxybenzylamine derivatives: axial coordination effect of dimethyl sulphoxide molecule
- Hemilabile imino-phosphine palladium(II) complexes: synthesis, molecular structure, and evaluation in Heck reactions
- Structure and vibrational spectra of copper(II) 2-pyridylmethanolate tetrahydrate
- Synthesis and characterization of a silylated Brazilian clay mineral surface
- Nano-titanium oxide doped with gold, silver, and palladium — synthesis and structural characterization
- Synthesis and insecticidal activity of 6,8-dichloro-quinazoline derivatives containing a sulfide substructure
- Effect of extraction method on phenolic content and antioxidant activity of mistletoe extracts from Viscum album subsp. abietis
- Synthesis of melamine-formaldehyde resin functionalised with sulphonic groups and its catalytic activities
- Synthesis, characterization, and application of a new tripodal ligand for the preparation of LSCF(6482) perovskite