Home Fatty acid methyl ester production from acid oil using silica sulfuric acid: Process optimization and reaction kinetics
Article
Licensed
Unlicensed Requires Authentication

Fatty acid methyl ester production from acid oil using silica sulfuric acid: Process optimization and reaction kinetics

  • Krunal Shah EMAIL logo , Jigisha Parikh , Bharat Dholakiya and Kalpana Maheria
Published/Copyright: December 20, 2013
Become an author with De Gruyter Brill

Abstract

Conversion of high free fatty acids (FFA) containing acid oil (AO) to fatty acid methyl esters (FAME) using silica sulfuric acid (SSA) as a solid acid catalyst was investigated. Process parameters such as reaction temperature, reaction time, catalyst loading, and methanol to oil molar ratio were optimized using the Taguchi orthogonal array method. Maximum FFA conversion (97.16 %) was achieved under the optimal set of parameter values viz. 70°C, 4 mass % catalyst loading, and 1: 15 oil to methanol molar ratio after 90 min. SSA was reused three times successfully without a significant loss in activity. Biodiesel produced from AO met the international biodiesel standards. Determination of kinetic parameters proved that the experimental results fit the pseudo first order kinetic law.

[1] Allen, C. A. W., Watts, K. C., Ackman, R. G., & Pegg, M. J. (1999). Predicting the viscosity of biodiesel fuels from their fatty acid ester composition. Fuel, 78, 1319–1326. DOI: 10.1016/s0016-2361(99)00059-9. http://dx.doi.org/10.1016/S0016-2361(99)00059-910.1016/S0016-2361(99)00059-9Search in Google Scholar

[2] American Oil Chemists’ Society, AOCS (2009a). AOCS official method: Iodine value of fats and oils cyclohexane-acetic acid method. AOCS Cd 1d-92. Urbana, IL, USA. Search in Google Scholar

[3] American Oil Chemists’ Society, AOCS (2009b). AOCS official method: Saponification value modified method using methanol. AOCS Cd 3c-91. Urbana, IL, USA. Search in Google Scholar

[4] American Society for Testing and Materials, ASTM (2002a). ASTM standard: Standard test method for density, relative density (specific gravity), or API gravity of crude petroleum and liquid petroleum products by hydrometer method. ASTM D1298-99. West Conshohocken, PA, USA. DOI: 10.1520/D1298-99. 10.1520/D1298-99Search in Google Scholar

[5] American Society for Testing and Materials, ASTM (2002b). ASTM standard: Standard test method for density, relative density, and API gravity of liquids by digital density meter. ASTM D4052-96. West Conshohocken, PA, USA. DOI: 10.1520/D4052-96. 10.1520/D4052-96Search in Google Scholar

[6] American Society for Testing and Materials, ASTM (2002c). ASTM standard: Standard test method for acid number of petroleum product by potentiometric titration. ASTM D664-95. West Conshohocken, PA, USA. DOI: 10.1520/D0664-95. 10.1520/D0664-95Search in Google Scholar

[7] American Society for Testing and Materials, ASTM (2002d). ASTM standard: Standard test method for flash and fire point by Cleveland open cup tester. ASTM D92-02. West Conshohocken, PA, USA. DOI: 10.1520/D0092-02. 10.1520/D0092-02Search in Google Scholar

[8] American Society for Testing and Materials, ASTM (2002e). ASTM standard: Standard test method for pour point of petroleum products. ASTM D97-02. West Conshohocken, PA, USA. DOI: 10.1520/D0097-02. 10.1520/D0097-02Search in Google Scholar

[9] American Society for Testing and Materials, ASTM (2002f). ASTM standard: Standard test method for cloud point of petroleum products. ASTM D2500-02. West Conshohocken, PA, USA. DOI: 10.1520/D2500-02. 10.1520/D2500-02Search in Google Scholar

[10] American Society for Testing and Materials, ASTM (2002g). ASTM standard: Standard specification for biodiesel fuel (B100) blend stock for distillate fuels. ASTM D6751-02. West Conshohocken, PA, USA. DOI: 10.1520/D6751-02. 10.1520/D6751-02Search in Google Scholar

[11] American Society for Testing and Materials, ASTM (2005). ASTM standard: Standard test method for determination of the unsaponifiable nonvolatile matter in sulfated oils. ASTM D5553-95. West Conshohocken, PA, USA. DOI: 10.1520/D5553-95. 10.1520/D5553-95Search in Google Scholar

[12] American Society for Testing and Materials, ASTM (2006). ASTM standard: Standard test method for fatty acids content of naval stores, including rosin, tall oil, and related products. ASTM D1585-96. West Conshohocken, PA, USA. DOI: 10.1520/D1585-96. 10.1520/D1585-96Search in Google Scholar

[13] Balat, M., & Balat, H. (2008). A critical review of bio-diesel as a vehicular fuel. Energy Conversion and Management, 49, 2727–2741. DOI: 10.1016/j.enconman.2008.03.016. http://dx.doi.org/10.1016/j.enconman.2008.03.01610.1016/j.enconman.2008.03.016Search in Google Scholar

[14] Berrios, M., Siles, J., Martin, M. A., & Martin, A. (2007). A kinetic study of esterification of free fatty acids (FFA) in sunflower oil. Fuel, 86, 2383–2388. DOI: 10.1016/j.fuel.2007.02.002. http://dx.doi.org/10.1016/j.fuel.2007.02.00210.1016/j.fuel.2007.02.002Search in Google Scholar

[15] Brahmkhatri, V., & Patel, A. (2011). 12-Tungstophosphoric acid anchored to SBA-15: An efficient, environmentally benign reusable catalyst for biodiesel production by esterification of free fatty acids. Applied Catalysis A: General, 403, 161–172. DOI: 10.1016/j.apcata.2011.06.027. http://dx.doi.org/10.1016/j.apcata.2011.06.02710.1016/j.apcata.2011.06.027Search in Google Scholar

[16] Černoch, M., Hájek, M., & Skopal, F. (2010). Relationship among flash point, carbon residue, viscosity and some impurities in biodiesel after ethanolysis of rape-seed oil. Bioresource Technology, 101, 7397–7401. DOI: 10.1016/j.biortech.2010.05.003. http://dx.doi.org/10.1016/j.biortech.2010.05.00310.1016/j.biortech.2010.05.003Search in Google Scholar PubMed

[17] Chen, R. X., Ju, Y. H., & Mou, C. Y. (2007). Direct synthesis of mesoporous sulfated silica-zirconia catalysts with high catalytic activity for biodiesel via esterification. The Journal of Physical Chemistry C, 111, 18731–18737. DOI: 10.1021/jp0749221. http://dx.doi.org/10.1021/jp074922110.1021/jp0749221Search in Google Scholar

[18] Chen, X., Du, W., & Liu, D. H. (2008). Response surface optimization of biocatalytic biodiesel production with acid oil. Biochemical Engineering Journal, 40, 423–429. DOI: 10.1016/j.bej.2008.01.012. http://dx.doi.org/10.1016/j.bej.2008.01.01210.1016/j.bej.2008.01.012Search in Google Scholar

[19] Chongkhong, S., Tongurai, C., Chetpattananondh, P., & Bunyakan, C. (2007). Biodiesel production by esterification of palm fatty acid distillate. Biomass and Bioenergy, 31, 563–568. DOI: 10.1016/j.biombioe.2007.03.001. http://dx.doi.org/10.1016/j.biombioe.2007.03.00110.1016/j.biombioe.2007.03.001Search in Google Scholar

[20] Desai, M. A., & Parikh, J. K. (2012). Hydrotropic extraction of Citral from Cymbopogon flexuosus (Steud.) Wats. Industrial & Engineering Chemistry Research, 51, 3750–3757. DOI: 10.1021/ie202025b. http://dx.doi.org/10.1021/ie202025b10.1021/ie202025bSearch in Google Scholar

[21] dos Santos Corrąa, I. N., de Souza, S. L., Catran, M., Bernardes, O. L., Figueiredo Portilho, M., & Pereira Langone, M. A. (2011). Enzymatic biodiesel synthesis using byproduct obtained from palm oil refining. Enzyme Research, 2011, 1–8. DOI: 10.4061/2011/814507. 10.4061/2011/814507Search in Google Scholar PubMed PubMed Central

[22] Echim, C., Verhé, R., de Greyt, W., & Stevens, C. (2009). Production of biodiesel from side-stream refining products. Energy & Environmental Science, 2, 1131–1141. DOI: 10.1039/b905925c. http://dx.doi.org/10.1039/b905925c10.1039/b905925cSearch in Google Scholar

[23] European Committee for Standardization, CEN (2008). European standard: Automotive fuels — Fatty acid methyl esters (FAME) for diesel engines — Requirements and test methods. EN 14214:2008+A1:2009. Brussels, Belgium. Search in Google Scholar

[24] Fang, L., Xing, R., Wu, H. H., Li, X. H., Liu, Y. M., & Wu, P. (2010). Clean synthesis of biodiesel over solid acid catalysts of sulfonated mesopolymers. Science China Chemistry, 53, 1481–1486. DOI: 10.1007/s11426-010-3206-x. http://dx.doi.org/10.1007/s11426-010-3206-x10.1007/s11426-010-3206-xSearch in Google Scholar

[25] Ghosh, S., & Bhattacharya, D. K. (1995). Utilization of acid oil in making valuable fatty products by microbial lipase technology. Journal of the American Oil Chemist’s Society, 72, 1541–1544. DOI: 10.1007/bf02577851. http://dx.doi.org/10.1007/BF0257785110.1007/BF02577851Search in Google Scholar

[26] Guo, F., Xiu, Z. L., & Liang, Z. X. (2012). Synthesis of biodiesel form acidified soybean soapstock using lignin-derived carbonaceous catalysts. Applied Energy, 98, 47–52. DOI: 10.1016/j.apenergy.2012.02.071. http://dx.doi.org/10.1016/j.apenergy.2012.02.07110.1016/j.apenergy.2012.02.071Search in Google Scholar

[27] Haas, M. J., Michalski, P. J., Runyon, S., Nunez, A., & Scott, K. M. (2003). Production of FAME from acid oil, a byproduct of vegetable oil refining. Journal of the American Oil Chemist’s Society, 80, 97–102. DOI: 10.1007/s11746-003- 0658-4. http://dx.doi.org/10.1007/s11746-003-0658-410.1007/s11746-003-0658-4Search in Google Scholar

[28] Haas, M. J., McAloon, A. J., Yee, W. C., & Foglia, T. A. (2006). A process model to estimate biodiesel production costs. Bioresource Technology, 97, 671–678. DOI: 10.1016/j.biortech.2005.03.039. http://dx.doi.org/10.1016/j.biortech.2005.03.03910.1016/j.biortech.2005.03.039Search in Google Scholar PubMed

[29] Kiss, A. A., Dimian, A. C., & Rothenberg, G. (2006). Solid acid catalysts for biodiesel production — Towards sustainable energy. Advanced Synthesis & Catalysis, 348, 75–81. DOI: 10.1002/adsc.200505160. http://dx.doi.org/10.1002/adsc.20050516010.1002/adsc.200505160Search in Google Scholar

[30] Kulkarni, M. G., & Dalai, A. K. (2006). Waste cooking oil — An economical source for biodiesel: A review. Industrial & Engineering Chemistry Research, 45, 2901–2913. DOI: 10.1021/ie0510526. http://dx.doi.org/10.1021/ie051052610.1021/ie0510526Search in Google Scholar

[31] Lam, M. K., Lee, K. T., & Mohamed, A. R. (2010). Homogeneous, heterogeneous and enzymatic catalysis for transesterification of high free fatty acid oil (waste cooking oil) to biodiesel: A review. Biotechnology Advances, 28, 500–518. DOI: 10.1016/j.biotechadv.2010.03.002. http://dx.doi.org/10.1016/j.biotechadv.2010.03.00210.1016/j.biotechadv.2010.03.002Search in Google Scholar PubMed

[32] Levenspiel, O. (2007). Chemical reaction engineering (3rd ed.). India: Willey India Pvt. Ltd. Search in Google Scholar

[33] Li, Y., Zhang, X. D., & Sun, L. (2010). Fatty acid methyl esters from soapstocks with potential use as biodiesel. Energy Conversion and Management, 51, 2307–2311. DOI: 10.1016/j.enconman.2010.04.003. http://dx.doi.org/10.1016/j.enconman.2010.04.00310.1016/j.enconman.2010.04.003Search in Google Scholar

[34] Lin, L., Zhou, C. S., Saritporn, W., Shen, X. Q., & Dong, M. D. (2011). Opportunities and challenges for biodiesel fuel. Applied Energy, 88, 1020–1031. DOI: 10.1016/j.apenergy.2010.09.029. http://dx.doi.org/10.1016/j.apenergy.2010.09.02910.1016/j.apenergy.2010.09.029Search in Google Scholar

[35] Lou, W. Y., Zong, M. H., & Duan, Z. Q. (2008). Efficient production of biodiesel from high free fatty acid-containing waste oils using various carbohydrate-derived solid acid catalysts. Bioresource Technology, 99, 8752–8758. DOI: 10.1016/j.biortech.2008.04.038. http://dx.doi.org/10.1016/j.biortech.2008.04.03810.1016/j.biortech.2008.04.038Search in Google Scholar

[36] Mbaraka, I. K., Radu, D. R., Lin, V. S. Y., & Shanks, B. H. (2003). Organosulfonic acid-functionalized mesoporous silicas for the esterification of fatty acid. Journal of Catalysis, 219, 329–336. DOI: 10.1016/s0021-9517(03)00193-3. http://dx.doi.org/10.1016/S0021-9517(03)00193-310.1016/S0021-9517(03)00193-3Search in Google Scholar

[37] Melero, J. A., Iglesias, J., & Morales, G. (2009). Heterogeneous acid catalysts for biodiesel production: current status and future challenges. Green Chemistry, 11, 1285–1308. DOI: 10.1039/b902086a. http://dx.doi.org/10.1039/b902086a10.1039/b902086aSearch in Google Scholar

[38] Özbay, N., Otkar, N., & Tapan, N. A. (2008). Esterification of free fatty acids in waste cooking oils (WCO): Role of ion-exchange resins. Fuel, 87, 1789–1798. DOI: 10.1016/j.fuel.2007.12.010. http://dx.doi.org/10.1016/j.fuel.2007.12.01010.1016/j.fuel.2007.12.010Search in Google Scholar

[39] Phan, A. N., & Phan T. M. (2008). Biodiesel production from waste cooking oils. Fuel, 87, 3490–3496. DOI: 10.1016/j.fuel.2008.07.008. http://dx.doi.org/10.1016/j.fuel.2008.07.00810.1016/j.fuel.2008.07.008Search in Google Scholar

[40] Ramachandran, K., Sivakumar, P., Suganya, T., & Renganathan, S. (2011). Production of biodiesel from mixed waste vegetable oil using an aluminium hydrogen sulphate as a heterogeneous acid catalyst. Bioresource Technology, 102, 7289–72893. DOI: 10.1016/j.biortech.2011.04.100. http://dx.doi.org/10.1016/j.biortech.2011.04.10010.1016/j.biortech.2011.04.100Search in Google Scholar PubMed

[41] Ross, P. J. (1996). Taguchi techniques for quality engineering (2nd ed.). New York, NY, USA: McGraw-Hill. Search in Google Scholar

[42] Salehi, P., Zolfigol, M. A., Shirini, F., & Baghbanzadeh, M. (2006). Silica sulfuric acid and silica chloride as efficient reagents for organic reactions. Current Organic Chemistry, 10, 2171–2189. DOI: 10.2174/138527206778742650. http://dx.doi.org/10.2174/13852720677874265010.2174/138527206778742650Search in Google Scholar

[43] Shah, K. A., Maheria, K. C., & Parikh, J. K. (2011). Effect of reaction parameters on the catalytic transesterification of cotton-seed oil using silica sulfuric acid. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, in press. DOI: 10.1080/15567036.2011.636141. 10.1080/15567036.2011.636141Search in Google Scholar

[44] Shaterian, H. R., Ghashang, M., & Feyzi, M. (2008). Silica sulfuric acid as an efficient catalyst for the preparation of 2H-indazolo[2, 1-b]phthalazine-triones. Applied Catalysis A: General, 345, 128–133. DOI: 10.1016/j.apcata.2008.04.032. http://dx.doi.org/10.1016/j.apcata.2008.04.03210.1016/j.apcata.2008.04.032Search in Google Scholar

[45] Siti Kartina, A. K., & Nor Suhaila, M. H. (2011). Conversion of waste cooking oil (WCO) and palm fatty acid distillate (PFAD) to biodiesel. In Proceedings of 3rd International Symposium & Exhibition in Sustainable Energy & Environment, June 1–3, 2011 (pp. 42–44). Malacca: Malaysia. DOI: 10.1109/isesee.2011.5977106. 10.1109/ISESEE.2011.5977106Search in Google Scholar

[46] Srilatha, K., Kumar, C. R., Devi, B. L. A. P., Prasad, R. B. N., Prasad, P. S. S., & Lingaiah, N. (2011). Efficient solid acid catalysts for esterification of free fatty acids with methanol for the production of biodiesel. Catalysis Science & Technology, 1, 662–668. DOI: 10.1039/c1cy00085c. http://dx.doi.org/10.1039/c1cy00085c10.1039/c1cy00085cSearch in Google Scholar

[47] Sun, P. Y., Sun, J., Yao, J. F., Zhang, L. X., & Xu, N. P. (2010). Continuous production of biodiesel from high acid value oils in microstructured reactor by acid-catalyzed reactions. Chemical Engineering Journal, 162, 364–370. DOI: 10.1016/j.cej.2010.04.064. http://dx.doi.org/10.1016/j.cej.2010.04.06410.1016/j.cej.2010.04.064Search in Google Scholar

[48] Taguchi, G., Chowdhury, S., & Wu, Y. (2005). Taguchi’s quality engineering handbook. Hoboken, NJ, USA: Wiley. Search in Google Scholar

[49] Tropecąlo, A. I., Casimiro, M. H., Fonseca, I. M., Ramos, A. M., Vital, J., & Castanheiro, J. E. (2010). Esterification of free fatty acids to biodiesel over heteropolyacids immobilized on mesoporous silica. Applied Catalysis A: General, 390, 183–189. DOI: 10.1016/j.apcata.2010.10.007. http://dx.doi.org/10.1016/j.apcata.2010.10.00710.1016/j.apcata.2010.10.007Search in Google Scholar

[50] Wang, L., Du, W., Liu, D. H., Li, L. L., & Dai, N. M. (2006). Lipase-catalyzed biodiesel production from soybean oil deodorizer distillate with absorbent present in tert-butanol system. Journal of Molecular Catalysis B: Enzymatic, 43, 29–32. DOI: 10.1016/j.molcatb.2006.03.005. http://dx.doi.org/10.1016/j.molcatb.2006.03.00510.1016/j.molcatb.2006.03.005Search in Google Scholar

[51] Wang, Z. M., Lee, J. S., Park, J. Y., Wu, C. Z., & Yuan, Z. H. (2007). Novel biodiesel production technology from soybean soapstock. Korean Journal of Chemical Engineering, 24, 1027–1030. DOI: 10.1007/s11814-007-0115-6. http://dx.doi.org/10.1007/s11814-007-0115-610.1007/s11814-007-0115-6Search in Google Scholar

[52] Zhang, L. P, Sheng, B. Y., Xin, Z., Liu, Q., & Sun, S. Z. (2010). Kinetics of transesterification of palm oil and dimethyl carbonate for biodiesel production at the catalysis of heterogeneous base catalyst. Bioresource Technology, 101, 8144–8150. DOI: 10.1016/j.biortech.2010.05.069. http://dx.doi.org/10.1016/j.biortech.2010.05.06910.1016/j.biortech.2010.05.069Search in Google Scholar

[53] Zhang, Y., Dubé, M. A., McLean, D. D., & Kates, M. (2003). Biodiesel production from waste cooking oil: 1. Process design and technological assessment. Bioresource Technology, 89, 1–16. DOI: 10.1016/s0960-8524(03)00040-3. http://dx.doi.org/10.1016/S0960-8524(03)00040-310.1016/S0960-8524(03)00040-3Search in Google Scholar

[54] Zolfigol, M. A. (2001). Silica sulfuric acid/NaNO2 as a novel heterogeneous system for production of thionitriles and disulfides under mild conditions. Tetrahedron, 57, 9509–9511. DOI: 10.1016/s0040-4020(01)00960-7. http://dx.doi.org/10.1016/S0040-4020(01)00960-710.1016/S0040-4020(01)00960-7Search in Google Scholar

Published Online: 2013-12-20
Published in Print: 2014-4-1

© 2013 Institute of Chemistry, Slovak Academy of Sciences

Articles in the same Issue

  1. Determination of mercury species using thermal desorption analysis in AAS
  2. Non-enzymatic hydrogen peroxide sensor based on a nanoporous gold electrode modified with platinum nanoparticles
  3. Production and application of amylases of Rhizopus oryzae and Rhizopus microsporus var. oligosporus from industrial waste in acquisition of glucose
  4. Effect of salicin on induction and carbon catabolite repression of endoxylanase synthesis in Penicillium janthinellum MTCC 10889
  5. Recovery of acetaminophen from aqueous solutions using a supported liquid membrane based on a quaternary ammonium salt as ionophore
  6. Enantioseparation of mandelic acid enantiomers in ionic liquid aqueous two-phase extraction systems
  7. Fatty acid methyl ester production from acid oil using silica sulfuric acid: Process optimization and reaction kinetics
  8. Mineral constituents of edible parasol mushroom Macrolepiota procera (Scop. ex Fr.) Sing and soils beneath its fruiting bodies collected from a rural forest area
  9. Evaluation of antioxidants in Dong quai (Angelica sinensis) and its dietary supplements
  10. Electrochemical storage properties of polyaniline-, poly(N-methylaniline)-, and poly(N-ethylaniline)-coated pencil graphite electrodes
  11. Controllable one-step synthesis of ZnO nanostructures using molybdophosphoric acid
  12. I2-mediated α-selective Ferrier glycosylation approach to synthesis of O-glycosyl amino acids
  13. Synthesis of 1,1-diacetates catalysed by silica-supported boron sulfonic acid under solvent-free conditions and ambient temperature
  14. Development of oxopyrrolidine-based anti-cancer compounds: DNA binding, in silico, cell line studies, drug-likeness and mechanism at supra-molecular level
  15. Clay and charcoal composites: characterisation and application of factorial design analysis for dye adsorption
  16. Role of thermoxidation and depolymerisation in the ageing of systems paper/gum arabic/historical ink
  17. Natural organic acids promoted Beckmann rearrangement: Green and expeditious synthesis of amides under solvent-free conditions
Downloaded on 27.11.2025 from https://www.degruyterbrill.com/document/doi/10.2478/s11696-013-0488-4/pdf
Scroll to top button