Home I2-mediated α-selective Ferrier glycosylation approach to synthesis of O-glycosyl amino acids
Article
Licensed
Unlicensed Requires Authentication

I2-mediated α-selective Ferrier glycosylation approach to synthesis of O-glycosyl amino acids

  • Li Ren EMAIL logo , Yang Liu , Gui-Hua Yu , Jing-Zheng Hao and Mao-Sheng Cheng
Published/Copyright: December 20, 2013
Become an author with De Gruyter Brill

Abstract

I2 is an effective promoter for the synthesis of 2,3-unsaturated glycosides via Ferrier glycosylation. This reaction was used in the present work for the synthesis of O-glycosylated Fmoc amino acid building blocks. This metal-free reaction afforded the desired products with good to excellent yields with good α-selectivity.

[1] Bertozzi, C. R., & Kiessling, L. L. (2001). Chemical glycobiology. Science, 291, 2357–2364. DOI: 10.1126/science.1059820. http://dx.doi.org/10.1126/science.105982010.1126/science.1059820Search in Google Scholar

[2] Collins, P. C., & Ferrier, R. J. (1995). Monosaccharides: Their chemistry and their roles in natural products. Chichester, UK: Wiley. Search in Google Scholar

[3] Dwek, R. A. (1996). Glycobiology: Toward understanding the function of sugars. Chemical Reviews, 96, 683–720. DOI: 10.1021/cr940283b. http://dx.doi.org/10.1021/cr940283b10.1021/cr940283bSearch in Google Scholar

[4] Franz, A. H., Wei, Y. Q., Samoshin, V. V., & Gross, P. H. (2002). Mild synthesis of disaccharidic 2,3-enopyranosyl cyanides and 2-C-2-deoxy pyranosyl cyanides with Hg(CN)2/HgBr2/TMSCN. The Journal of Organic Chemistry, 67, 7662–7669. DOI: 10.1021/jo0111661. http://dx.doi.org/10.1021/jo011166110.1021/jo0111661Search in Google Scholar

[5] Halkes, K. M., Gotfredsen, C. H., Grøtli, M., Miranda, L. P., Duus, J. Ø, & Meldal, M. (2001). Solid-phase glycosylation of peptide templates and on-bead MAS-NMR analysis: Perspectives for glycopeptide libraries. Chemistry — A European Journal, 7, 3584–3591. DOI: 10.1002/1521-3765(20010817)7:16<3584::AID-CHEM3584>3.0.CO;2-Z. http://dx.doi.org/10.1002/1521-3765(20010817)7:16<3584::AID-CHEM3584>3.0.CO;2-Z10.1002/1521-3765(20010817)7:16<3584::AID-CHEM3584>3.0.CO;2-ZSearch in Google Scholar

[6] Herzner, H., Reipen, T., Schultz, M., & Kunz, H. (2000). Synthesis of glycopeptides containing carbohydrate and peptide recognition motifs. Chemical Reviews, 100, 4495–4538. DOI: 10.1021/cr990308c. http://dx.doi.org/10.1021/cr990308c10.1021/cr990308cSearch in Google Scholar

[7] Hoffmann, H. M. R., Herden, U., Breithor, M., & Rhode, O. (1997). Polyannulated glycopyranosides via radical-mediated tandem reactions. Stereoselective synthesis of 6·5·6 dioxatricycles via 5-exo-trig, 6-endo-dig mode — III. Tetrahedron, 53, 8383–8400. DOI: 10.1016/s0040-4020(97)00518-8. http://dx.doi.org/10.1016/S0040-4020(97)00518-810.1016/S0040-4020(97)00518-8Search in Google Scholar

[8] Jensen, K. J., Meldal, M., & Bock, K. (1993). Glycosylation of phenols: preparation of 1,2-cis and 1,2-trans glycosylated tyrosine derivatives to be used in solid-phase glycopeptide synthesis. Journal of the Chemical Society, Perkin Transactions 1, 1993, 2119–2129. DOI: 10.1039/p19930002119. http://dx.doi.org/10.1039/p1993000211910.1039/p19930002119Search in Google Scholar

[9] Kihlberg, J., & Elofsson, M. (1997). Solid-phase synthesis of glycopeptides: Immunological studies with T cell stimulating glycopeptides. Current Medicinal Chemistry, 4, 85–116. 10.2174/0929867304666220309204820Search in Google Scholar

[10] Kunz, H. (1987). Synthesis of glycopeptides, partial structures of biological recognition components [New synthetic methods (67)]. Angewandte Chemie International Edition in English, 26, 294–308. DOI: 10.1002/anie.198702941. http://dx.doi.org/10.1002/anie.19870294110.1002/anie.198702941Search in Google Scholar

[11] Lemieux, R. U., & Ratcliffe, R. M. (1979). The azidonitration of tri-O-acetyl-D-galactal. Canadian Journal of Chemistry, 57, 1244–1251. DOI: 10.1139/v79-203. http://dx.doi.org/10.1139/v79-20310.1139/v79-203Search in Google Scholar

[12] Mitchell, S. A., Pratt, M. R., Hruby, V. J., & Polt, R. (2001). Solid-phase synthesis of O-linked glycopeptide analogues of enkephalin. The Journal Organic Chemistry, 66, 2327–2342. DOI: 10.1021/jo005712m. http://dx.doi.org/10.1021/jo005712m10.1021/jo005712mSearch in Google Scholar

[13] Rudd, P. M., Elliott, T., Cresswell, P., Wilson, I. A., & Dwek, R. A. (2001). Glycosylation and the immune system. Science, 291, 2370–2376. DOI: 10.1126/science.291.5512.2370. http://dx.doi.org/10.1126/science.291.5512.237010.1126/science.291.5512.2370Search in Google Scholar

[14] Schleyer, A., Meldal, M., Manat, R., Paulsen, H., & Bock, K. (1997). Direct solid-phase glycosylations of peptide templates on a novel PEG-based resin. Angewandte Chemie International Edition in English, 36, 1976–1978. DOI: 10.1002/anie.199719761. http://dx.doi.org/10.1002/anie.19971976110.1002/anie.199719761Search in Google Scholar

[15] St. Hilaire, P. M., Lowary, T. L., Meldal, M., & Bock, K. (1998). Oligosaccharide mimetics obtained by novel, rapid screening of carboxylic acid encoded glycopeptide libraries. Journal of the Americal Chemical Society, 120, 13312–13320. DOI: 10.1021/ja980387u. http://dx.doi.org/10.1021/ja980387u10.1021/ja980387uSearch in Google Scholar

[16] Subba Reddy, B. V., Divyavania, C., & Yadav, J. S. (2010). Highly stereoselective synthesis of 2,3-unsaturated thiogly-copyranosides employing molecular iodine. Synthesis, 2010, 1617–1620. DOI: 10.1055/s-0029-1218722. http://dx.doi.org/10.1055/s-0029-121872210.1055/s-0029-1218722Search in Google Scholar

[17] Talbot, P., Shur, B. D., & Myles, D. G. (2003). Cell adhesion and fertilization: Steps in oocyte transport, sperm-zona pellucida interactions, and sperm-egg fusion. Biology of Reproduction, 68, 1–9. DOI: 10.1095/biolreprod.102.007856. http://dx.doi.org/10.1095/biolreprod.102.00785610.1095/biolreprod.102.007856Search in Google Scholar

[18] Tsuda, T., & Nishimura, S. I. (1996). Synthesis of an antifreeze glycoprotein analogue: efficient preparation of sequential glycopeptide polymers. Chemical Communications, 1996, 2779–2780. DOI: 10.1039/cc9960002779. http://dx.doi.org/10.1039/cc996000277910.1039/cc9960002779Search in Google Scholar

[19] van Ameijde, J. V., Albadaa, H. B., & Liskamp, R. M. J. (2002). A convenient preparation of several N-linked glycoamino acid building blocks for efficient solid-phase synthesis of glycopeptides. Journal of the Chemical Society, Perkin Transactions 1, 2002, 1042–1049. DOI: 10.1039/b201296k. http://dx.doi.org/10.1039/b201296k10.1039/b201296kSearch in Google Scholar

[20] Varki, A. (1993). Biological roles of oligosaccharides: All of the theories are correct. Glycobiology, 3, 97–130. DOI: 10.1093/glycob/3.2.97. http://dx.doi.org/10.1093/glycob/3.2.9710.1093/glycob/3.2.97Search in Google Scholar

[21] Wang, Z. G., Zhang, X. F., Live, D., & Danishefsky, S. J. (2000). From glycals to glycopeptides: A convergent and stereoselective total synthesis of a high mannose N-linked glycopeptide. Angewandte Chemie International Edition, 39, 3652–3656. DOI: 10.1002/1521-3773(20001016)39:20<3652::AIDANIE3652>3.0.CO;2-B. http://dx.doi.org/10.1002/1521-3773(20001016)39:20<3652::AID-ANIE3652>3.0.CO;2-B10.1002/1521-3773(20001016)39:20<3652::AID-ANIE3652>3.0.CO;2-BSearch in Google Scholar

Published Online: 2013-12-20
Published in Print: 2014-4-1

© 2013 Institute of Chemistry, Slovak Academy of Sciences

Articles in the same Issue

  1. Determination of mercury species using thermal desorption analysis in AAS
  2. Non-enzymatic hydrogen peroxide sensor based on a nanoporous gold electrode modified with platinum nanoparticles
  3. Production and application of amylases of Rhizopus oryzae and Rhizopus microsporus var. oligosporus from industrial waste in acquisition of glucose
  4. Effect of salicin on induction and carbon catabolite repression of endoxylanase synthesis in Penicillium janthinellum MTCC 10889
  5. Recovery of acetaminophen from aqueous solutions using a supported liquid membrane based on a quaternary ammonium salt as ionophore
  6. Enantioseparation of mandelic acid enantiomers in ionic liquid aqueous two-phase extraction systems
  7. Fatty acid methyl ester production from acid oil using silica sulfuric acid: Process optimization and reaction kinetics
  8. Mineral constituents of edible parasol mushroom Macrolepiota procera (Scop. ex Fr.) Sing and soils beneath its fruiting bodies collected from a rural forest area
  9. Evaluation of antioxidants in Dong quai (Angelica sinensis) and its dietary supplements
  10. Electrochemical storage properties of polyaniline-, poly(N-methylaniline)-, and poly(N-ethylaniline)-coated pencil graphite electrodes
  11. Controllable one-step synthesis of ZnO nanostructures using molybdophosphoric acid
  12. I2-mediated α-selective Ferrier glycosylation approach to synthesis of O-glycosyl amino acids
  13. Synthesis of 1,1-diacetates catalysed by silica-supported boron sulfonic acid under solvent-free conditions and ambient temperature
  14. Development of oxopyrrolidine-based anti-cancer compounds: DNA binding, in silico, cell line studies, drug-likeness and mechanism at supra-molecular level
  15. Clay and charcoal composites: characterisation and application of factorial design analysis for dye adsorption
  16. Role of thermoxidation and depolymerisation in the ageing of systems paper/gum arabic/historical ink
  17. Natural organic acids promoted Beckmann rearrangement: Green and expeditious synthesis of amides under solvent-free conditions
Downloaded on 27.11.2025 from https://www.degruyterbrill.com/document/doi/10.2478/s11696-013-0482-x/html?lang=en
Scroll to top button