Startseite Synthesis of 1,1-diacetates catalysed by silica-supported boron sulfonic acid under solvent-free conditions and ambient temperature
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Synthesis of 1,1-diacetates catalysed by silica-supported boron sulfonic acid under solvent-free conditions and ambient temperature

  • Sami Sajjadifar EMAIL logo und Sobhan Rezayati
Veröffentlicht/Copyright: 20. Dezember 2013
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

1,1-Diacetates derivatives were prepared using the direct condensation of aldehydes with acetic anhydride in the presence of silica-supported boron sulfonic acid (SiO2/B(SO4H)3) as a tri-functional inorganic Brønsted acid catalyst under solvent-free conditions at ambient temperature. The salient features of this methodology are: (i) cheaper process ready availability of the catalyst; (ii) versatility; (iii) high regio-selectivity of the procedure and recyclable property of the catalyst.

[1] Aggen, D. H., Arnold, J. N., Hayes, P. D., Smoter, N. J., & Mohan, R. S. (2004). Bismuth compounds in organic synthesis. Bismuth nitrate catalyzed chemoselective synthesis of acylals from aromatic aldehydes. Tetrahedron, 60, 3675–3679. DOI: 10.1016/j.tet.2004.02.046. 10.1016/j.tet.2004.02.046Suche in Google Scholar

[2] Deka, N., Kalita, D. J., Borah, R., & Sarma, J. C. (1997). Iodine as acetylation catalyst in the preparation of 1,1-diacetates from aldehydes. Journal of Organic Chemistry, 62, 1563–1564. DOI: 10.1021/jo961741e. http://dx.doi.org/10.1021/jo961741e10.1021/jo961741eSuche in Google Scholar

[3] Firouzabadi, H., Iranpoor, N., & Amani, K. (2002). Heteropoly acids as heterogeneous catalysts for thioacetalization and transthioacetalization reactions. Organic Synthesis, 2002, 59–62. DOI: 10.1055/s-2002-19300. http://dx.doi.org/10.1055/s-2002-1930010.1055/s-2002-19300Suche in Google Scholar

[4] Frick, J. G., Jr., & Harper, R. J., Jr. (1984). Acetals as crosslinking reagents for cotton. Journal Applied Polymer Science, 29, 1433–1447. DOI: 10.1002/app.1984.070290436. http://dx.doi.org/10.1002/app.1984.07029043610.1002/app.1984.070290436Suche in Google Scholar

[5] Ghorbani-Vaghei, R., & Malaekehpoor, S. M. (2010). Onepot facile synthesis of acridine derivatives under solvent-free condition. Journal of the Iranian Chemical Society, 7, 957–964. DOI: 10.1007/bf03246091. http://dx.doi.org/10.1007/BF0324609110.1007/BF03246091Suche in Google Scholar

[6] Ghosh, R., Maiti, S., Chakraborty, A., & Halder, R. J. (2004). Indium triflate: a reusable catalyst for expeditious chemoselective conversion of aldehydes to acylals. Journal of Molecular Catalysis A: Chemical, 215, 49–53. DOI: 10.1016/j.molcata.2004.01.018. http://dx.doi.org/10.1016/j.molcata.2004.01.01810.1016/j.molcata.2004.01.018Suche in Google Scholar

[7] Hajipour, A. R., Zarei, A., & Ruoho, A. E. (2007). P2O5/Al2O3 as an efficient heterogeneous catalyst for chemoselective synthesis of 1,1-diacetates under solvent-free conditions. Tetrahedron Letters, 48, 2881–2884. DOI: 10.1016/j.tetlet.2007.02.090. http://dx.doi.org/10.1016/j.tetlet.2007.02.09010.1016/j.tetlet.2007.02.090Suche in Google Scholar

[8] Hajipour, A. R., Khazdooz, L., & Ruoho, A. E. (2008). Brönsted acidic ionic liquid as an efficient catalyst for chemoselective synthesis of 1,1-diacetates under solvent-free conditions. Catalysis Communications, 9, 89–96. DOI: 10.1016/j.catcom.2007.05.003. http://dx.doi.org/10.1016/j.catcom.2007.05.00310.1016/j.catcom.2007.05.003Suche in Google Scholar

[9] Hosseini-Sarvari, M. (2011). Synthesis of quinolines using nanoflake ZnO as a new catalyst under solvent-free conditions. Journal of the Iranian Chemical Society, 8, S119–S128. http://dx.doi.org/10.1007/BF0325428810.1007/BF03254288Suche in Google Scholar

[10] Jin, T. S., Sun, G., Li, Y.W., & Li, T. S. (2002). An efficient and convenient procedure for the preparation of 1,1-diacetates from aldehydes catalyzed by H2NSO3H. Green Chemistry, 4, 255–256. DOI: 10.1039/b200219a. http://dx.doi.org/10.1039/b200219a10.1039/b200219aSuche in Google Scholar

[11] Kalbasi, R. J., Massah, A. J., & Shafiei, A. R. (2011). Synthesis and characterization of BEA-SO3H as an efficient and chemoselective acid catalyst. Journal of Molecular Catalysis A: Chemical, 335, 51–59. DOI: 10.1016/j.molcata.2010.11.013. http://dx.doi.org/10.1016/j.molcata.2010.11.01310.1016/j.molcata.2010.11.013Suche in Google Scholar

[12] Kannasani, R. K., Satyanarayana-Peruri, V. V., & Battula, S. R. (2012). NaHSO4-SiO2 as an efficient and chemoselective catalyst, for the synthesis of acylal from aldehydes under, solvent-free conditions. Chemistry Central Journal, 6, 136. DOI: 10.1186/1752-153x-6-136. http://dx.doi.org/10.1186/1752-153X-6-13610.1186/1752-153X-6-136Suche in Google Scholar PubMed PubMed Central

[13] Khan, A. T., Choudhury, L. H., & Ghosh, S. (2005). Acetonyltriphenylphosphonium bromide (ATPB): A versatile reagent for the acylation of alcohols, phenols, thiols and amines and for 1,1-diacylation of aldehydes under solvent-free conditions. European Journal of Organic Chemistry, 13, 2782–2787. DOI: 10.1002/ejoc.200500066. http://dx.doi.org/10.1002/ejoc.20050006610.1002/ejoc.200500066Suche in Google Scholar

[14] Kiasat, A. R., & Fallah-Mehrjardi, M. (2008). B(HSO4)3: a novel and efficient solid acid catalyst for the regioselective conversion of epoxides to thiocyanohydrins under solventfree conditions. Journal of The Brazilian Chemical Society, 19, 1595–1599. DOI: 10.1590/s0103-50532008000800020. http://dx.doi.org/10.1590/S0103-5053200800080002010.1590/S0103-50532008000800020Suche in Google Scholar

[15] Kochhar, K. S., Bal, B. S., Deshpande, R. P., Rajadhyaksha, S. N., & Pinnick, H. W. (1983). Protecting groups in organic synthesis. Part 8. Conversion of aldehydes into geminal diacetates. Journal of Organic Chemistry, 48, 1765–1767. DOI: 10.1021/jo00158a036. http://dx.doi.org/10.1021/jo00158a03610.1021/jo00158a036Suche in Google Scholar

[16] Karimi, B., Seradj, H., & Ebrahimian, G. R. (2000). Mild and efficient conversion of aldehydes to 1,1-diacetates catalyzed with N-bromosuccinimide (NBS). Synlett, 2000, 623–624. DOI: 10.1055/s-2000-6616. http://dx.doi.org/10.1055/s-2000-661610.1055/s-2000-6616Suche in Google Scholar

[17] Li, Y. Q. (2000). A rapid and convenient synthesis of 1,1-diacetates from aldehydes and acetic anhydride catalyzed by PVC-FeCl3 catalyst. Synthetic Communications, 30, 3913–3917. DOI: 10.1080/00397910008086948. http://dx.doi.org/10.1080/0039791000808694810.1080/00397910008086948Suche in Google Scholar

[18] Liu, Q., Ai, H. M., & Feng, S. A. (2012). Ultrasound-assisted synthesis of acylals from aldehydes using Mg(CH3SO3)2-HOAC. Synthetic Communications, 42, 122–127. DOI: 10.1080/00397911.2010.523150. http://dx.doi.org/10.1080/00397911.2010.52315010.1080/00397911.2010.523150Suche in Google Scholar

[19] Massah, A. R., Kalbasi, R. J., & Shafiei, A. (2012). ZSM-5-SO3H as a novel, efficient, and reusable catalyst for the chemoselective synthesis and deprotection of 1,1-diacetates under eco-friendly conditions. Monatshefte für Chemie — Chemical Monthly, 143, 643–652. DOI: 10.1007/s00706-011-0646-8. http://dx.doi.org/10.1007/s00706-011-0646-810.1007/s00706-011-0646-8Suche in Google Scholar

[20] Mouriño, A. (1978). An improved synthesis of 1α,3β-dihydroxycholesta-5,7-diene. Synthic Communicatins, 8, 117–125. DOI: 10.1080/00397917808062105. http://dx.doi.org/10.1080/0039791780806210510.1080/00397917808062105Suche in Google Scholar

[21] Nagy, N. M., Jakab, M. A., Konya, J., & Antus, S. (2002). Convenient preparation of 1,1-diacetates from aromatic aldehydes catalysed by zinc-montmorillonite. Applied Clay Science, 21, 213–216. DOI: 10.1016/s0169-1317(02)00066-2. http://dx.doi.org/10.1016/S0169-1317(02)00066-210.1016/S0169-1317(02)00066-2Suche in Google Scholar

[22] Nouri Sefat, M., Deris, A., & Niknam, K. (2011). Preparation of silica-bonded propyl-diethylene-triamine-N-sulfamic acid as a recyclable catalyst for chemoselective synthesis of 1,1-diacetates. Chinese Journal of Chemistry, 29, 2361–2367. DOI: 10.1002/cjoc.201180403. http://dx.doi.org/10.1002/cjoc.20118040310.1002/cjoc.201180403Suche in Google Scholar

[23] Pourmousavi, S. A., & Zinati, Z. (2009). H2SO4-silica as an efficient and chemoselective catalyst for the synthesis of acylal from aldehydes under solvent-free conditions. Turkish Journal of Chemistry, 33, 385–392. DOI: 10.3906/kim-0805-45. 10.3906/kim-0805-45Suche in Google Scholar

[24] Rabindran Jermy, B., & Pandurangan, A. (2008). Synthesis of geminal diacetates (acylals) using heterogeneous H3PW12O40 supported MCM-41 molecular sieves. Catalysis Communications, 9, 577–583. DOI: 10.1016/j.catcom.2007.02.016. http://dx.doi.org/10.1016/j.catcom.2007.02.01610.1016/j.catcom.2007.02.016Suche in Google Scholar

[25] Reddy, A. V., Ravinder, K., Reddy, V. L. N., Ravinkanth, V., & Yenkateswarlu, Y. (2003). Amberlyst-15-catalyzed efficient synthesis of 1,1-diacetates from aldehydes. Synthetic Communications, 33, 1531–1536. DOI: 10.1081/scc-120018771. http://dx.doi.org/10.1081/SCC-12001877110.1081/SCC-120018771Suche in Google Scholar

[26] Romanelli, G. P., Thomas, H. J., Baronettic, G. T., & Autino, J. C. (2003). Solvent-free catalytic preparation of 1,1-diacetates from aldehydes using a Wells-Dawson acid (H6P2W18O62 · 24H2O). Tetrahedron Letters, 44, 1301–1303. DOI: 10.1016/s0040-4039(02)02817-4. http://dx.doi.org/10.1016/S0040-4039(02)02817-410.1016/S0040-4039(02)02817-4Suche in Google Scholar

[27] Roy, S. C., & Banerjee, B. (2002). A mild and efficient method for the chemoselective synthesis of acylals from aldehydes and their deprotections catalysed by ceric ammonium nitrate. Synlett, 2002, 1677–1688. DOI: 10.1055/s-2002-34243. http://dx.doi.org/10.1055/s-2002-3424310.1055/s-2002-34243Suche in Google Scholar

[28] Saini, A., Kumar, S., & Sandhu, J. S. (2007). RuCl3 · xH2O: A new efficient catalyst for facile preparation of 1,1-diacetates from aldehydes. Synthetic Communications, 38, 106–113. DOI: 10.1080/00397910701650831. http://dx.doi.org/10.1080/0039791070165083110.1080/00397910701650831Suche in Google Scholar

[29] Sajjadifar, S., Mirshokraie, S. A., Javaherneshan, N., & Louie, O. (2012). SBSA as a new and efficient catalyst for the one-pot green synthesis of benzimidazole derivatives at room temperature. American Journal of Organic Chemistry, 2, 1–6. DOI: 10.5923/j.ajoc.20120202.01. http://dx.doi.org/10.5923/j.ajoc.20120202.0110.5923/j.ajoc.20120202.01Suche in Google Scholar

[30] Sajjadifar, S. (2013). Boron sulfonic acid (2008–2012). International Journal of ChemTech Research, 5, 385–389. Suche in Google Scholar

[31] Sajjadifar, S., & Louie, O. (2013). Regioselective thiocyanation of aromatic and heteroaromatic compounds by using boron sulfonic acid as a new, efficient, and cheap catalyst in water. Journal of Chemistry, 2013, 674946. DOI: 10.1155/2013/674946. 10.1155/2013/674946Suche in Google Scholar

[32] Sajjadifar, S., & Rezayati, S. (2013). A simple and new method for the synthesis of 1,5-benzodiazepine derivatives catalyzed by boron sulfonic acid in solvent H2O/EtOH. International Journal of ChemTech Research, 5, 1964–1968. Suche in Google Scholar

[33] Sajjadifar, S., Khosravani, E., & Shiri, S. (2013). Benzimidazole synthesis by using boron sulfonic acid as a new and efficient catalyst at room temperature. International Journal of ChemTech Research, 5, 1969–1976. Suche in Google Scholar

[34] Sandberg, M., & Sydnes, L. K. (1998). The chemistry of acylals. Part II. Formation of nitriles by treatment of acylals with trimethylsilyl azide in the presence of a Lewis acid. Tetrahedron Letters, 39, 6361–6364. DOI: 10.1016/s0040-4039(98)01309-4. http://dx.doi.org/10.1016/S0040-4039(98)01309-410.1016/S0040-4039(98)01309-4Suche in Google Scholar

[35] Sandberg, M., & Sydnes, L. K. (2000). The chemistry of acylals. 3. Cyanohydrin esters from acylals with cyanide reagents. Organic Letters, 2, 687–689. DOI: 10.1021/ol005535b. http://dx.doi.org/10.1021/ol005535b10.1021/ol005535bSuche in Google Scholar

[36] Sharifi, A., Abaee, M. S., Tavakkoli, A., & Mirzaei, M. (2008). An efficient and general procedure for room-temperature synthesis of benzofurans under solvent-free conditions using KF/Al2O3. Journal of the Iranian Chemical Society, 5, S113–S117. http://dx.doi.org/10.1007/BF0324649910.1007/BF03246499Suche in Google Scholar

[37] Shelke, K., Sapkal, S., Kategaonkar, A., Shingate, B., & Shingare, M. S. (2009). An efficient and green procedure for the preparation of acylals from aldehydes catalyzed by alum [KAl(SO4)2 · 12H2O]. South African Journal of chemistry, 62, 109–112. Suche in Google Scholar

[38] Smitha, G., & Reddy, C. S. (2003). A facile and efficient ZrCl4 catalyzed conversion of aldehydes to geminal-diacetates and dipivalates and their cleavage. Tetrahedron, 59, 9571–9576. DOI: 10.1016/j.tet.2003.10.002. http://dx.doi.org/10.1016/j.tet.2003.10.00210.1016/j.tet.2003.10.002Suche in Google Scholar

[39] Sydness, L. K., & Sandberg, M. (1997). The chemistry of acylals. Part I. The reactivity of acylals towards Grignard and organolithium reagents. Tetrahedron, 53, 12679–12690. DOI: 10.1016/s0040-4020(97)00789-8. 10.1016/S0040-4020(97)00789-8Suche in Google Scholar

[40] Tamami, B., Firouzabadi, H., Ebrahimzadeh, F., & Fadavi, A. (2009). Poly (N-bromoacrylamide): an efficient and useful catalyst for the protection of carbonyl compounds as dithiolanes, dithianes and oxathiolanes under solvent-free and microwave conditions. Journal of the Iranian Chemical Society, 6, 722–728. http://dx.doi.org/10.1007/BF0324616210.1007/BF03246162Suche in Google Scholar

[41] van Heerden, F. R., Huyser, J. J., Bradley, D., Williams, G., & Holzapfel, C. W. (1998). Palladium-catalysed substitution reactions of geminal allylic diacetates. Tetrahedron Letters, 39, 5281–5284. DOI: 10.1016/s0040-4039(98)01000-4. http://dx.doi.org/10.1016/S0040-4039(98)01000-410.1016/S0040-4039(98)01000-4Suche in Google Scholar

[42] Yadav, J. S., Reddy, B. V. S., & Srihari, P. (2001). Scandium triflate catalyzed allylation of acetals and gem-diacetates: A facile synthesis of homoallyl ethers and acetates. Synlett, 2001, 673–675. DOI: 10.1055/s-2001-13379. 10.1055/s-2001-13379Suche in Google Scholar

[43] Ying, J. Y., Mehnert, C. P., & Wong, M. S. (1999). Synthesis and applications of supramolecular-templated mesoporous materials. Angewwandte Chemie International Edition, 38, 56–77. DOI: 10.1002/(sici)1521-3773(19990115)38:1/2〈56::aid-anie56〉3.0.co;2-e. http://dx.doi.org/10.1002/(SICI)1521-3773(19990115)38:1/2<56::AID-ANIE56>3.0.CO;2-E10.1002/(SICI)1521-3773(19990115)38:1/2<56::AID-ANIE56>3.0.CO;2-ESuche in Google Scholar

[44] Zare, A., Hasaninejad, A., Rostami, E., Moosavi-Zare, A. R., Merajoddin, M., Arghoon, A., Pishahang, N., & Shekouhy, M. (2009). LiHSO4/SiO2 as a new, efficient and reusable catalytic system for the chemoselective conversion of aldehydes to acylals under solvent-free conditions. E-Journal of Chemistry, 6, S390–S396. DOI: 10.1155/2009/953175. http://dx.doi.org/10.1155/2009/95317510.1155/2009/953175Suche in Google Scholar

[45] Zolfigol, M. A., Vahedi, H. H., Massoudi, A. H., Sajjadifar, S., Louie, O., & Javaherneshan, N. (2011). Mild and efficient one pot synthesis of benzoimidazoles from aldehyde by using BSA a new catalyst. Clinical Biochemistry, 44, S219. DOI: 10.1016/j.clinbiochem.2011.08.973. http://dx.doi.org/10.1016/j.clinbiochem.2011.08.97310.1016/j.clinbiochem.2011.08.973Suche in Google Scholar

[46] Zolfigol, M. A., Khazaei, A., Mokhlesi, M., Vahedi, H., Sajadifar, S., & Pirveysian, M. (2012). Heterigeneous and catalytic thiocyanation of aromatic compounds in aqueous media. Phosphorus, Sulfur, and Silicon and the Related Elements, 187, 295–304. DOI: 10.1080/10426507.2011.610846. http://dx.doi.org/10.1080/10426507.2011.61084610.1080/10426507.2011.610846Suche in Google Scholar

Published Online: 2013-12-20
Published in Print: 2014-4-1

© 2013 Institute of Chemistry, Slovak Academy of Sciences

Artikel in diesem Heft

  1. Determination of mercury species using thermal desorption analysis in AAS
  2. Non-enzymatic hydrogen peroxide sensor based on a nanoporous gold electrode modified with platinum nanoparticles
  3. Production and application of amylases of Rhizopus oryzae and Rhizopus microsporus var. oligosporus from industrial waste in acquisition of glucose
  4. Effect of salicin on induction and carbon catabolite repression of endoxylanase synthesis in Penicillium janthinellum MTCC 10889
  5. Recovery of acetaminophen from aqueous solutions using a supported liquid membrane based on a quaternary ammonium salt as ionophore
  6. Enantioseparation of mandelic acid enantiomers in ionic liquid aqueous two-phase extraction systems
  7. Fatty acid methyl ester production from acid oil using silica sulfuric acid: Process optimization and reaction kinetics
  8. Mineral constituents of edible parasol mushroom Macrolepiota procera (Scop. ex Fr.) Sing and soils beneath its fruiting bodies collected from a rural forest area
  9. Evaluation of antioxidants in Dong quai (Angelica sinensis) and its dietary supplements
  10. Electrochemical storage properties of polyaniline-, poly(N-methylaniline)-, and poly(N-ethylaniline)-coated pencil graphite electrodes
  11. Controllable one-step synthesis of ZnO nanostructures using molybdophosphoric acid
  12. I2-mediated α-selective Ferrier glycosylation approach to synthesis of O-glycosyl amino acids
  13. Synthesis of 1,1-diacetates catalysed by silica-supported boron sulfonic acid under solvent-free conditions and ambient temperature
  14. Development of oxopyrrolidine-based anti-cancer compounds: DNA binding, in silico, cell line studies, drug-likeness and mechanism at supra-molecular level
  15. Clay and charcoal composites: characterisation and application of factorial design analysis for dye adsorption
  16. Role of thermoxidation and depolymerisation in the ageing of systems paper/gum arabic/historical ink
  17. Natural organic acids promoted Beckmann rearrangement: Green and expeditious synthesis of amides under solvent-free conditions
Heruntergeladen am 27.11.2025 von https://www.degruyterbrill.com/document/doi/10.2478/s11696-013-0480-z/html?lang=de
Button zum nach oben scrollen