Home Effect of salicin on induction and carbon catabolite repression of endoxylanase synthesis in Penicillium janthinellum MTCC 10889
Article
Licensed
Unlicensed Requires Authentication

Effect of salicin on induction and carbon catabolite repression of endoxylanase synthesis in Penicillium janthinellum MTCC 10889

  • Aditi Kundu EMAIL logo and Rina Ray
Published/Copyright: December 20, 2013
Become an author with De Gruyter Brill

Abstract

Amongst various carbon sources, xylan was found to be the sole inducer of endoxylanase production by Penicillium janthinellum MTCC 10889 in submerged cultivation. Endoxylanase synthesis by a xylan induced culture was initially repressed after a simultaneous addition of xylose, probably by the inducer exclusion mechanism, but it was resumed and achieved its highest level at a much later stage of growth (at 120 h). Xylose added after 30 h of growth cannot exert its full repressive effect. Although glucose was proved to be a more potent repressor than xylose, supplementation of salicin, an alcoholic β-glycoside containing d-glucose, with pure xylan resulted in an about 3.22 fold increase in the enzyme synthesis at 72 h followed by constant high production of the enzyme at least until the 144th h of growth. Inducing capacity of salicin in a xylan induced culture was significantly reduced when it was added after 30 h of growth. Addition of salicin and xylan help to partially overcome the repressive effect of xylose and glucose. Failure of salicin in recovering the endoxylanase synthesis in actinomycin D and cyclohexamide inhibited the xylan induced culture indicating that salicin cannot initiate the de novo synthesis of the enzyme.

[1] Aro, N., Pakula, T., & Penttilä, M. (2005). Transcriptional regulation of plant cell wall degradation by filamentous fungi. FEMS Microbiology Reviews, 29, 719–739. DOI: 10.1016/j.femsre.2004.11.006. http://dx.doi.org/10.1016/j.femsre.2004.11.00610.1016/j.femsre.2004.11.006Search in Google Scholar PubMed

[2] Benedetti, A. C. E. P., da Costa, E. D., Aragon, C. C., dos Santos, A. F., Goulart, A. J., Attili-Angelis, D., & Monti, R. (2013). Low-cost carbon sources for the production of a thermostable xylanase by Aspergillus niger. Revista de Ciências Farmacêuticas Básica e Aplicada, 34, 25–31. Search in Google Scholar

[3] Biely, P., & Petráková, E. (1984). Novel inducers of the xylandegrading enzyme system of Cryptococcus albidus. Journal of Bacteriology, 160, 408–412. 10.1128/jb.160.1.408-412.1984Search in Google Scholar PubMed PubMed Central

[4] Biswas, S. R., Mishra, A. K., & Nanda, G. (1988). Induction of xylanase in Aspergillus ochraceus. Folia Microbiologia, 33, 355–359. DOI: 10.1007/bf02925844. http://dx.doi.org/10.1007/BF0292584410.1007/BF02925844Search in Google Scholar

[5] Calero-Nieto, F., Di Pietro, A., Roncero, M. I., & Hera, C. (2007). Role of the transcriptional activator XlnR of Fusarium oxysporum in regulation of xylanase genes and virulence. Molecular Plant-Microbe Interactions, 20, 977–985. http://dx.doi.org/10.1094/MPMI-20-8-097710.1094/MPMI-20-8-0977Search in Google Scholar PubMed

[6] Chávez, R., Bull, P., & Eyzaguirre, J. (2006). The xylanolytic enzyme system from the genus Penicillium. Journal of Biotechnology, 123, 413–433. DOI: 10.1016/j.jbiotec.2005.12.036. http://dx.doi.org/10.1016/j.jbiotec.2005.12.03610.1016/j.jbiotec.2005.12.036Search in Google Scholar PubMed

[7] Desai, T. A., & Rao, C. V. (2010). Regulation of arabinose and xylose metabolism in Escherichia coli. Applied and Environmental Microbiology, 76, 1524–1532. DOI: 10.1128/aem.01970-09. http://dx.doi.org/10.1128/AEM.01970-0910.1128/AEM.01970-09Search in Google Scholar PubMed PubMed Central

[8] de Vries, R. P, & Visser, J. (2001). Aspergillus enzymes involved in degradation of plant cell wall polysaccharides. Microbiology and Molecular Biology Reviews, 65, 497–522. DOI: 10.1128/mmbr.65.4.497-522.2001. http://dx.doi.org/10.1128/MMBR.65.4.497-522.200110.1128/MMBR.65.4.497-522.2001Search in Google Scholar PubMed PubMed Central

[9] Dhiman, S. S., Sharma, J., & Battan, B. (2008). Industrial applications and future prospects of microbial xylanases: A review. BioResources, 3, 1377–1402. Search in Google Scholar

[10] Dodd, D., & Cann, I. K. O. (2009). Enzymatic deconstruction of xylan for biofuel production. Global Change Biology Bioenergy, 1, 2–17. DOI: 10.1111/j.1757-1707.2009.01004.x. http://dx.doi.org/10.1111/j.1757-1707.2009.01004.x10.1111/j.1757-1707.2009.01004.xSearch in Google Scholar PubMed PubMed Central

[11] Emami, K., Nagy, T., Fontes, C. M. G. A., Ferreira, L. M. A., & Gilbert, H. J. (2002). Evidence for temporal regulation of the two Pseudomonas cellulosa xylanases belonging to glycoside hydrolase family 11. Journal of Bacteriology, 184, 4124–4133. DOI: 10.1128/jb.184.15.4124-4133.2002. http://dx.doi.org/10.1128/JB.184.15.4124-4133.200210.1128/JB.184.15.4124-4133.2002Search in Google Scholar PubMed PubMed Central

[12] Goyal, M., Kalra, K. L., Sareen, V. K., & Soni, G. (2008). Xylanase production with xylan rich lignocellulosic wastes by a local soil isolate of Trichoderma viride. Brazilian Journal of Microbiology, 39, 535–541. DOI: 10.1590/s1517-83822008000300025. http://dx.doi.org/10.1590/S1517-8382200800030002510.1590/S1517-83822008000300025Search in Google Scholar

[13] Herold, S., Bischof, R., Metz, B., Seiboth, B., & Kubicek, C. P. (2013). Xylanase gene transcription in Trichoderma reesei is triggered by different inducers representing different hemicellulosic pentose polymers. Eukaryotic Cell, 12, 390–398. DOI: 10.1128/ec.00182-12. http://dx.doi.org/10.1128/EC.00182-1210.1128/EC.00182-12Search in Google Scholar PubMed PubMed Central

[14] Jørgensen, H., Morkeberg, A., Krogh, K. B. R., & Olsson, L. (2004). Growth and enzyme production by three Penicillium species on monosaccharides. Journal of Biotechnology, 109, 295–299. DOI: 10.1016/j.jbiotec.2003.12.011. http://dx.doi.org/10.1016/j.jbiotec.2003.12.01110.1016/j.jbiotec.2003.12.011Search in Google Scholar PubMed

[15] Joshi, C., & Khare, S. K. (2012). Induction of xylanase in thermophilic fungi Scytalidium thermophilum and Sporotrichum thermophile. Brazilian Archives of Biology and Technology, 55, 21–27. DOI: 10.1590/s1516-89132012000100003. http://dx.doi.org/10.1590/S1516-8913201200010000310.1590/S1516-89132012000100003Search in Google Scholar

[16] Krátký, Z., & Biely, P. (1980). Inducible β-xyloside permease as a constituent of the xylan-degrading enzyme system of the yeast Cryptococcus albidus. European Journal of Biochemistry, 112, 367–373. DOI: 10.1111/j.1432-1033.1980.tb07214.x. http://dx.doi.org/10.1111/j.1432-1033.1980.tb07214.x10.1111/j.1432-1033.1980.tb07214.xSearch in Google Scholar PubMed

[17] Khucharoenphaisan, K., Tokuyama, S., Ratanakhanokchai, K., & Kitpreechavanich, V. (2010). Induction and repression of β-xylanase of Thermomyces lanuginosus TISTR 3465. Pakistan Journal of Biological Sciences, 13, 209–215. DOI: 10.3923/pjbs.2010.209.215. http://dx.doi.org/10.3923/pjbs.2010.209.21510.3923/pjbs.2010.209.215Search in Google Scholar PubMed

[18] Kulkarni, N., Shendye, A., & Rao, M. (1999). Molecular and biotechnological aspects of xylanases. FEMS Microbiology Reviews, 23, 411–456. DOI: 10.1111/j.1574-6976.1999.tb00407.x. http://dx.doi.org/10.1111/j.1574-6976.1999.tb00407.x10.1111/j.1574-6976.1999.tb00407.xSearch in Google Scholar PubMed

[19] Kundu, A., & Ray, R. R. (2011). Agrowaste utilization and production of extra cellular endoxylanase by Penicillium janthinellum MTCC 10889 in solid state fermentation. International Journal of Current Research, 3, 120–124. Search in Google Scholar

[20] Mach-Aigner, A. R., Gudynaite-Savitch, L., & Mach, R. L. (2011). l-Arabitol is the actual inducer of xylanase expression in Hypocrea jecorina (Trichoderma reesei). Applied and Environmental Microbiology, 77, 5988–5994. DOI: 10.1128/aem.05427-11. http://dx.doi.org/10.1128/AEM.05427-1110.1128/AEM.05427-11Search in Google Scholar PubMed PubMed Central

[21] Mandal, A., Kar, S., Das Mahapatra, P. K., Maity, C., Pati, B. R., & Mondal, K. C. (2012). Regulation of xylanase biosynthesis in Bacillus cereus BSA1. Applied Biochemistry and Biotechnology, 167, 1052–1060. DOI: 10.1007/s12010-011-9523-5. http://dx.doi.org/10.1007/s12010-011-9523-510.1007/s12010-011-9523-5Search in Google Scholar PubMed

[22] Marui, J., Tanaka, A., Mimura, S., de Graaff, L. H., Visser, J., Kitamoto, N., Kato, M., Kobayashi, T., & Tsukagoshi, N. (2002). A transcriptional activator, AoXlnR, controls the expression of genes encoding xylanolytic enzymes in Aspergillus oryzae. Fungal Genetics and Biology, 35, 157–169. DOI: 10.1006/fgbi.2001.1321. http://dx.doi.org/10.1006/fgbi.2001.132110.1006/fgbi.2001.1321Search in Google Scholar PubMed

[23] Miyazaki, K., Hirase, T., Kojima, Y., & Flint, H. J. (2005). Medium- to large-sized xylo-oligosaccharides are responsible for xylanase induction in Prevotella bryantii B14. Microbiology, 151, 4121–4125. DOI: 10.1099/mic.0.28270-0. http://dx.doi.org/10.1099/mic.0.28270-010.1099/mic.0.28270-0Search in Google Scholar PubMed

[24] Michelin, M., Polizeli, M. L. T. M., Ruzene, D. S., Silva, D. P., Vicente, A. A., Jorge, J. A., Terenzi, H. F., & Teixeira, J. A. (2011). Xylanase and β-xylosidase production by Aspergillus ochraceus: New perspectives for the application of wheat straw autohydrolysis liquor. Applied Biochemistry and Biotechnology, 166, 336–347. DOI: 10.1007/s12010-011-9428-3. http://dx.doi.org/10.1007/s12010-011-9428-310.1007/s12010-011-9428-3Search in Google Scholar PubMed

[25] Miller, G. L. (1959). Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry, 31, 426–428. DOI: 10.1021/ac60147a030. http://dx.doi.org/10.1021/ac60147a03010.1021/ac60147a030Search in Google Scholar

[26] Pal, A., & Khanum, F. (2010). Production and extraction optimization of xylanase from Aspergillus niger DFR-5 through solid-state-fermentation. Bioresource Technology, 101, 7563–7569. DOI: 10.1016/j.biortech.2010.04.033. http://dx.doi.org/10.1016/j.biortech.2010.04.03310.1016/j.biortech.2010.04.033Search in Google Scholar PubMed

[27] Puspaningsih, N. N. T., Suwanto, A., Suhartono, M. T., Achmadi, S. S., Yogiara, & Kimura, T. (2008). Cloning, sequencing and characterization of the xylan degrading enzymes from Geobacillus thermoleovorans IT-08. Jurnal ILMU DASAR, 9, 177–187. Search in Google Scholar

[28] Ren, C., Chen, T., Zhang, J., Liang, L., & Lin, Z. (2009). An evolved xylose transporter from Zymomonas mobilis enhances sugar transport in Escherichia coli. Microbial Cell Factories, 8, 66. DOI: 10.1186/1475-2859-8-66. http://dx.doi.org/10.1186/1475-2859-8-6610.1186/1475-2859-8-66Search in Google Scholar PubMed PubMed Central

[29] Seiboth, B., Herold, S., & Kubicek, C. P. (2012). Metabolic engineering of inducer formation for cellulase and hemicellulase gene expression in Trichoderma reesei. In X. Wang, J. Chen, & P. Quinn (Eds.), Reprogramming microbial metabolic pathways (Series: Subcellular biochemistry, Vol. 64, Chapter 18, pp 367–390). Dordrecht, Germany: Springer. 10.1007/978-94-007-5055-5 18. Search in Google Scholar

[30] Shulami, S., Raz-Pasteur, A., Tabachnikov, O., Gilead-Gropper, S., Shner, I., & Shoham, Y. (2011). The l-arabinan utilization system of Geobacillus stearothermophilus. Journal of Bacteriology, 193, 2838–2850. DOI: 10.1128/jb.00222-11. http://dx.doi.org/10.1128/JB.00222-1110.1128/JB.00222-11Search in Google Scholar PubMed PubMed Central

[31] Sun, J., Tian, C., Diamond, S., & Glass, N. L. (2012). Deciphering transcriptional regulatory mechanisms associated with hemicellulose degradation in Neurospora crassa. Eukaryotic Cell, 11, 482–493. DOI: 10.1128/ec.05327-11. http://dx.doi.org/10.1128/EC.05327-1110.1128/EC.05327-11Search in Google Scholar PubMed PubMed Central

[32] van Peij, N. N. M. E., Visser, J., & de Graaff, L. H. (1998). Isolation and analysis of xlnR, encoding a transcriptional activator co-ordinating xylanolytic expression in Aspergillus niger. Molecular Microbiology, 27, 131–142. DOI: 10.1046/j.1365-2958.1998.00666.x. http://dx.doi.org/10.1046/j.1365-2958.1998.00666.x10.1046/j.1365-2958.1998.00666.xSearch in Google Scholar PubMed

[33] Zadra, I., Abt, B., Parson, W., & Haas, H. (2000). xylP promoter-based expression system and its use for antisense downregulation of the Penicillium chrysogenum nitrogen regulator NRE. Applied and Environmental Microbiology, 66, 4810–4816. DOI: 10.1128/aem.66.11.4810-4816.2000. http://dx.doi.org/10.1128/AEM.66.11.4810-4816.200010.1128/AEM.66.11.4810-4816.2000Search in Google Scholar PubMed PubMed Central

[34] Zhang, J., Moilanen, U., Tang, M., & Viikari, L. (2013). The carbohydrate-binding module of xylanase from Nonomuraea flexuosa decreases its non-productive adsorption on lignin. Biotechnology for Biofuels, 6, 18. DOI: 10.1186/1754-6834-6-18. http://dx.doi.org/10.1186/1754-6834-6-1810.1186/1754-6834-6-18Search in Google Scholar PubMed PubMed Central

Published Online: 2013-12-20
Published in Print: 2014-4-1

© 2013 Institute of Chemistry, Slovak Academy of Sciences

Articles in the same Issue

  1. Determination of mercury species using thermal desorption analysis in AAS
  2. Non-enzymatic hydrogen peroxide sensor based on a nanoporous gold electrode modified with platinum nanoparticles
  3. Production and application of amylases of Rhizopus oryzae and Rhizopus microsporus var. oligosporus from industrial waste in acquisition of glucose
  4. Effect of salicin on induction and carbon catabolite repression of endoxylanase synthesis in Penicillium janthinellum MTCC 10889
  5. Recovery of acetaminophen from aqueous solutions using a supported liquid membrane based on a quaternary ammonium salt as ionophore
  6. Enantioseparation of mandelic acid enantiomers in ionic liquid aqueous two-phase extraction systems
  7. Fatty acid methyl ester production from acid oil using silica sulfuric acid: Process optimization and reaction kinetics
  8. Mineral constituents of edible parasol mushroom Macrolepiota procera (Scop. ex Fr.) Sing and soils beneath its fruiting bodies collected from a rural forest area
  9. Evaluation of antioxidants in Dong quai (Angelica sinensis) and its dietary supplements
  10. Electrochemical storage properties of polyaniline-, poly(N-methylaniline)-, and poly(N-ethylaniline)-coated pencil graphite electrodes
  11. Controllable one-step synthesis of ZnO nanostructures using molybdophosphoric acid
  12. I2-mediated α-selective Ferrier glycosylation approach to synthesis of O-glycosyl amino acids
  13. Synthesis of 1,1-diacetates catalysed by silica-supported boron sulfonic acid under solvent-free conditions and ambient temperature
  14. Development of oxopyrrolidine-based anti-cancer compounds: DNA binding, in silico, cell line studies, drug-likeness and mechanism at supra-molecular level
  15. Clay and charcoal composites: characterisation and application of factorial design analysis for dye adsorption
  16. Role of thermoxidation and depolymerisation in the ageing of systems paper/gum arabic/historical ink
  17. Natural organic acids promoted Beckmann rearrangement: Green and expeditious synthesis of amides under solvent-free conditions
Downloaded on 27.11.2025 from https://www.degruyterbrill.com/document/doi/10.2478/s11696-013-0478-6/pdf?lang=en
Scroll to top button