Abstract
Amongst various carbon sources, xylan was found to be the sole inducer of endoxylanase production by Penicillium janthinellum MTCC 10889 in submerged cultivation. Endoxylanase synthesis by a xylan induced culture was initially repressed after a simultaneous addition of xylose, probably by the inducer exclusion mechanism, but it was resumed and achieved its highest level at a much later stage of growth (at 120 h). Xylose added after 30 h of growth cannot exert its full repressive effect. Although glucose was proved to be a more potent repressor than xylose, supplementation of salicin, an alcoholic β-glycoside containing d-glucose, with pure xylan resulted in an about 3.22 fold increase in the enzyme synthesis at 72 h followed by constant high production of the enzyme at least until the 144th h of growth. Inducing capacity of salicin in a xylan induced culture was significantly reduced when it was added after 30 h of growth. Addition of salicin and xylan help to partially overcome the repressive effect of xylose and glucose. Failure of salicin in recovering the endoxylanase synthesis in actinomycin D and cyclohexamide inhibited the xylan induced culture indicating that salicin cannot initiate the de novo synthesis of the enzyme.
[1] Aro, N., Pakula, T., & Penttilä, M. (2005). Transcriptional regulation of plant cell wall degradation by filamentous fungi. FEMS Microbiology Reviews, 29, 719–739. DOI: 10.1016/j.femsre.2004.11.006. http://dx.doi.org/10.1016/j.femsre.2004.11.00610.1016/j.femsre.2004.11.006Search in Google Scholar PubMed
[2] Benedetti, A. C. E. P., da Costa, E. D., Aragon, C. C., dos Santos, A. F., Goulart, A. J., Attili-Angelis, D., & Monti, R. (2013). Low-cost carbon sources for the production of a thermostable xylanase by Aspergillus niger. Revista de Ciências Farmacêuticas Básica e Aplicada, 34, 25–31. Search in Google Scholar
[3] Biely, P., & Petráková, E. (1984). Novel inducers of the xylandegrading enzyme system of Cryptococcus albidus. Journal of Bacteriology, 160, 408–412. 10.1128/jb.160.1.408-412.1984Search in Google Scholar PubMed PubMed Central
[4] Biswas, S. R., Mishra, A. K., & Nanda, G. (1988). Induction of xylanase in Aspergillus ochraceus. Folia Microbiologia, 33, 355–359. DOI: 10.1007/bf02925844. http://dx.doi.org/10.1007/BF0292584410.1007/BF02925844Search in Google Scholar
[5] Calero-Nieto, F., Di Pietro, A., Roncero, M. I., & Hera, C. (2007). Role of the transcriptional activator XlnR of Fusarium oxysporum in regulation of xylanase genes and virulence. Molecular Plant-Microbe Interactions, 20, 977–985. http://dx.doi.org/10.1094/MPMI-20-8-097710.1094/MPMI-20-8-0977Search in Google Scholar PubMed
[6] Chávez, R., Bull, P., & Eyzaguirre, J. (2006). The xylanolytic enzyme system from the genus Penicillium. Journal of Biotechnology, 123, 413–433. DOI: 10.1016/j.jbiotec.2005.12.036. http://dx.doi.org/10.1016/j.jbiotec.2005.12.03610.1016/j.jbiotec.2005.12.036Search in Google Scholar PubMed
[7] Desai, T. A., & Rao, C. V. (2010). Regulation of arabinose and xylose metabolism in Escherichia coli. Applied and Environmental Microbiology, 76, 1524–1532. DOI: 10.1128/aem.01970-09. http://dx.doi.org/10.1128/AEM.01970-0910.1128/AEM.01970-09Search in Google Scholar PubMed PubMed Central
[8] de Vries, R. P, & Visser, J. (2001). Aspergillus enzymes involved in degradation of plant cell wall polysaccharides. Microbiology and Molecular Biology Reviews, 65, 497–522. DOI: 10.1128/mmbr.65.4.497-522.2001. http://dx.doi.org/10.1128/MMBR.65.4.497-522.200110.1128/MMBR.65.4.497-522.2001Search in Google Scholar PubMed PubMed Central
[9] Dhiman, S. S., Sharma, J., & Battan, B. (2008). Industrial applications and future prospects of microbial xylanases: A review. BioResources, 3, 1377–1402. Search in Google Scholar
[10] Dodd, D., & Cann, I. K. O. (2009). Enzymatic deconstruction of xylan for biofuel production. Global Change Biology Bioenergy, 1, 2–17. DOI: 10.1111/j.1757-1707.2009.01004.x. http://dx.doi.org/10.1111/j.1757-1707.2009.01004.x10.1111/j.1757-1707.2009.01004.xSearch in Google Scholar PubMed PubMed Central
[11] Emami, K., Nagy, T., Fontes, C. M. G. A., Ferreira, L. M. A., & Gilbert, H. J. (2002). Evidence for temporal regulation of the two Pseudomonas cellulosa xylanases belonging to glycoside hydrolase family 11. Journal of Bacteriology, 184, 4124–4133. DOI: 10.1128/jb.184.15.4124-4133.2002. http://dx.doi.org/10.1128/JB.184.15.4124-4133.200210.1128/JB.184.15.4124-4133.2002Search in Google Scholar PubMed PubMed Central
[12] Goyal, M., Kalra, K. L., Sareen, V. K., & Soni, G. (2008). Xylanase production with xylan rich lignocellulosic wastes by a local soil isolate of Trichoderma viride. Brazilian Journal of Microbiology, 39, 535–541. DOI: 10.1590/s1517-83822008000300025. http://dx.doi.org/10.1590/S1517-8382200800030002510.1590/S1517-83822008000300025Search in Google Scholar
[13] Herold, S., Bischof, R., Metz, B., Seiboth, B., & Kubicek, C. P. (2013). Xylanase gene transcription in Trichoderma reesei is triggered by different inducers representing different hemicellulosic pentose polymers. Eukaryotic Cell, 12, 390–398. DOI: 10.1128/ec.00182-12. http://dx.doi.org/10.1128/EC.00182-1210.1128/EC.00182-12Search in Google Scholar PubMed PubMed Central
[14] Jørgensen, H., Morkeberg, A., Krogh, K. B. R., & Olsson, L. (2004). Growth and enzyme production by three Penicillium species on monosaccharides. Journal of Biotechnology, 109, 295–299. DOI: 10.1016/j.jbiotec.2003.12.011. http://dx.doi.org/10.1016/j.jbiotec.2003.12.01110.1016/j.jbiotec.2003.12.011Search in Google Scholar PubMed
[15] Joshi, C., & Khare, S. K. (2012). Induction of xylanase in thermophilic fungi Scytalidium thermophilum and Sporotrichum thermophile. Brazilian Archives of Biology and Technology, 55, 21–27. DOI: 10.1590/s1516-89132012000100003. http://dx.doi.org/10.1590/S1516-8913201200010000310.1590/S1516-89132012000100003Search in Google Scholar
[16] Krátký, Z., & Biely, P. (1980). Inducible β-xyloside permease as a constituent of the xylan-degrading enzyme system of the yeast Cryptococcus albidus. European Journal of Biochemistry, 112, 367–373. DOI: 10.1111/j.1432-1033.1980.tb07214.x. http://dx.doi.org/10.1111/j.1432-1033.1980.tb07214.x10.1111/j.1432-1033.1980.tb07214.xSearch in Google Scholar PubMed
[17] Khucharoenphaisan, K., Tokuyama, S., Ratanakhanokchai, K., & Kitpreechavanich, V. (2010). Induction and repression of β-xylanase of Thermomyces lanuginosus TISTR 3465. Pakistan Journal of Biological Sciences, 13, 209–215. DOI: 10.3923/pjbs.2010.209.215. http://dx.doi.org/10.3923/pjbs.2010.209.21510.3923/pjbs.2010.209.215Search in Google Scholar PubMed
[18] Kulkarni, N., Shendye, A., & Rao, M. (1999). Molecular and biotechnological aspects of xylanases. FEMS Microbiology Reviews, 23, 411–456. DOI: 10.1111/j.1574-6976.1999.tb00407.x. http://dx.doi.org/10.1111/j.1574-6976.1999.tb00407.x10.1111/j.1574-6976.1999.tb00407.xSearch in Google Scholar PubMed
[19] Kundu, A., & Ray, R. R. (2011). Agrowaste utilization and production of extra cellular endoxylanase by Penicillium janthinellum MTCC 10889 in solid state fermentation. International Journal of Current Research, 3, 120–124. Search in Google Scholar
[20] Mach-Aigner, A. R., Gudynaite-Savitch, L., & Mach, R. L. (2011). l-Arabitol is the actual inducer of xylanase expression in Hypocrea jecorina (Trichoderma reesei). Applied and Environmental Microbiology, 77, 5988–5994. DOI: 10.1128/aem.05427-11. http://dx.doi.org/10.1128/AEM.05427-1110.1128/AEM.05427-11Search in Google Scholar PubMed PubMed Central
[21] Mandal, A., Kar, S., Das Mahapatra, P. K., Maity, C., Pati, B. R., & Mondal, K. C. (2012). Regulation of xylanase biosynthesis in Bacillus cereus BSA1. Applied Biochemistry and Biotechnology, 167, 1052–1060. DOI: 10.1007/s12010-011-9523-5. http://dx.doi.org/10.1007/s12010-011-9523-510.1007/s12010-011-9523-5Search in Google Scholar PubMed
[22] Marui, J., Tanaka, A., Mimura, S., de Graaff, L. H., Visser, J., Kitamoto, N., Kato, M., Kobayashi, T., & Tsukagoshi, N. (2002). A transcriptional activator, AoXlnR, controls the expression of genes encoding xylanolytic enzymes in Aspergillus oryzae. Fungal Genetics and Biology, 35, 157–169. DOI: 10.1006/fgbi.2001.1321. http://dx.doi.org/10.1006/fgbi.2001.132110.1006/fgbi.2001.1321Search in Google Scholar PubMed
[23] Miyazaki, K., Hirase, T., Kojima, Y., & Flint, H. J. (2005). Medium- to large-sized xylo-oligosaccharides are responsible for xylanase induction in Prevotella bryantii B14. Microbiology, 151, 4121–4125. DOI: 10.1099/mic.0.28270-0. http://dx.doi.org/10.1099/mic.0.28270-010.1099/mic.0.28270-0Search in Google Scholar PubMed
[24] Michelin, M., Polizeli, M. L. T. M., Ruzene, D. S., Silva, D. P., Vicente, A. A., Jorge, J. A., Terenzi, H. F., & Teixeira, J. A. (2011). Xylanase and β-xylosidase production by Aspergillus ochraceus: New perspectives for the application of wheat straw autohydrolysis liquor. Applied Biochemistry and Biotechnology, 166, 336–347. DOI: 10.1007/s12010-011-9428-3. http://dx.doi.org/10.1007/s12010-011-9428-310.1007/s12010-011-9428-3Search in Google Scholar PubMed
[25] Miller, G. L. (1959). Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry, 31, 426–428. DOI: 10.1021/ac60147a030. http://dx.doi.org/10.1021/ac60147a03010.1021/ac60147a030Search in Google Scholar
[26] Pal, A., & Khanum, F. (2010). Production and extraction optimization of xylanase from Aspergillus niger DFR-5 through solid-state-fermentation. Bioresource Technology, 101, 7563–7569. DOI: 10.1016/j.biortech.2010.04.033. http://dx.doi.org/10.1016/j.biortech.2010.04.03310.1016/j.biortech.2010.04.033Search in Google Scholar PubMed
[27] Puspaningsih, N. N. T., Suwanto, A., Suhartono, M. T., Achmadi, S. S., Yogiara, & Kimura, T. (2008). Cloning, sequencing and characterization of the xylan degrading enzymes from Geobacillus thermoleovorans IT-08. Jurnal ILMU DASAR, 9, 177–187. Search in Google Scholar
[28] Ren, C., Chen, T., Zhang, J., Liang, L., & Lin, Z. (2009). An evolved xylose transporter from Zymomonas mobilis enhances sugar transport in Escherichia coli. Microbial Cell Factories, 8, 66. DOI: 10.1186/1475-2859-8-66. http://dx.doi.org/10.1186/1475-2859-8-6610.1186/1475-2859-8-66Search in Google Scholar PubMed PubMed Central
[29] Seiboth, B., Herold, S., & Kubicek, C. P. (2012). Metabolic engineering of inducer formation for cellulase and hemicellulase gene expression in Trichoderma reesei. In X. Wang, J. Chen, & P. Quinn (Eds.), Reprogramming microbial metabolic pathways (Series: Subcellular biochemistry, Vol. 64, Chapter 18, pp 367–390). Dordrecht, Germany: Springer. 10.1007/978-94-007-5055-5 18. Search in Google Scholar
[30] Shulami, S., Raz-Pasteur, A., Tabachnikov, O., Gilead-Gropper, S., Shner, I., & Shoham, Y. (2011). The l-arabinan utilization system of Geobacillus stearothermophilus. Journal of Bacteriology, 193, 2838–2850. DOI: 10.1128/jb.00222-11. http://dx.doi.org/10.1128/JB.00222-1110.1128/JB.00222-11Search in Google Scholar PubMed PubMed Central
[31] Sun, J., Tian, C., Diamond, S., & Glass, N. L. (2012). Deciphering transcriptional regulatory mechanisms associated with hemicellulose degradation in Neurospora crassa. Eukaryotic Cell, 11, 482–493. DOI: 10.1128/ec.05327-11. http://dx.doi.org/10.1128/EC.05327-1110.1128/EC.05327-11Search in Google Scholar PubMed PubMed Central
[32] van Peij, N. N. M. E., Visser, J., & de Graaff, L. H. (1998). Isolation and analysis of xlnR, encoding a transcriptional activator co-ordinating xylanolytic expression in Aspergillus niger. Molecular Microbiology, 27, 131–142. DOI: 10.1046/j.1365-2958.1998.00666.x. http://dx.doi.org/10.1046/j.1365-2958.1998.00666.x10.1046/j.1365-2958.1998.00666.xSearch in Google Scholar PubMed
[33] Zadra, I., Abt, B., Parson, W., & Haas, H. (2000). xylP promoter-based expression system and its use for antisense downregulation of the Penicillium chrysogenum nitrogen regulator NRE. Applied and Environmental Microbiology, 66, 4810–4816. DOI: 10.1128/aem.66.11.4810-4816.2000. http://dx.doi.org/10.1128/AEM.66.11.4810-4816.200010.1128/AEM.66.11.4810-4816.2000Search in Google Scholar PubMed PubMed Central
[34] Zhang, J., Moilanen, U., Tang, M., & Viikari, L. (2013). The carbohydrate-binding module of xylanase from Nonomuraea flexuosa decreases its non-productive adsorption on lignin. Biotechnology for Biofuels, 6, 18. DOI: 10.1186/1754-6834-6-18. http://dx.doi.org/10.1186/1754-6834-6-1810.1186/1754-6834-6-18Search in Google Scholar PubMed PubMed Central
© 2013 Institute of Chemistry, Slovak Academy of Sciences
Articles in the same Issue
- Determination of mercury species using thermal desorption analysis in AAS
- Non-enzymatic hydrogen peroxide sensor based on a nanoporous gold electrode modified with platinum nanoparticles
- Production and application of amylases of Rhizopus oryzae and Rhizopus microsporus var. oligosporus from industrial waste in acquisition of glucose
- Effect of salicin on induction and carbon catabolite repression of endoxylanase synthesis in Penicillium janthinellum MTCC 10889
- Recovery of acetaminophen from aqueous solutions using a supported liquid membrane based on a quaternary ammonium salt as ionophore
- Enantioseparation of mandelic acid enantiomers in ionic liquid aqueous two-phase extraction systems
- Fatty acid methyl ester production from acid oil using silica sulfuric acid: Process optimization and reaction kinetics
- Mineral constituents of edible parasol mushroom Macrolepiota procera (Scop. ex Fr.) Sing and soils beneath its fruiting bodies collected from a rural forest area
- Evaluation of antioxidants in Dong quai (Angelica sinensis) and its dietary supplements
- Electrochemical storage properties of polyaniline-, poly(N-methylaniline)-, and poly(N-ethylaniline)-coated pencil graphite electrodes
- Controllable one-step synthesis of ZnO nanostructures using molybdophosphoric acid
- I2-mediated α-selective Ferrier glycosylation approach to synthesis of O-glycosyl amino acids
- Synthesis of 1,1-diacetates catalysed by silica-supported boron sulfonic acid under solvent-free conditions and ambient temperature
- Development of oxopyrrolidine-based anti-cancer compounds: DNA binding, in silico, cell line studies, drug-likeness and mechanism at supra-molecular level
- Clay and charcoal composites: characterisation and application of factorial design analysis for dye adsorption
- Role of thermoxidation and depolymerisation in the ageing of systems paper/gum arabic/historical ink
- Natural organic acids promoted Beckmann rearrangement: Green and expeditious synthesis of amides under solvent-free conditions
Articles in the same Issue
- Determination of mercury species using thermal desorption analysis in AAS
- Non-enzymatic hydrogen peroxide sensor based on a nanoporous gold electrode modified with platinum nanoparticles
- Production and application of amylases of Rhizopus oryzae and Rhizopus microsporus var. oligosporus from industrial waste in acquisition of glucose
- Effect of salicin on induction and carbon catabolite repression of endoxylanase synthesis in Penicillium janthinellum MTCC 10889
- Recovery of acetaminophen from aqueous solutions using a supported liquid membrane based on a quaternary ammonium salt as ionophore
- Enantioseparation of mandelic acid enantiomers in ionic liquid aqueous two-phase extraction systems
- Fatty acid methyl ester production from acid oil using silica sulfuric acid: Process optimization and reaction kinetics
- Mineral constituents of edible parasol mushroom Macrolepiota procera (Scop. ex Fr.) Sing and soils beneath its fruiting bodies collected from a rural forest area
- Evaluation of antioxidants in Dong quai (Angelica sinensis) and its dietary supplements
- Electrochemical storage properties of polyaniline-, poly(N-methylaniline)-, and poly(N-ethylaniline)-coated pencil graphite electrodes
- Controllable one-step synthesis of ZnO nanostructures using molybdophosphoric acid
- I2-mediated α-selective Ferrier glycosylation approach to synthesis of O-glycosyl amino acids
- Synthesis of 1,1-diacetates catalysed by silica-supported boron sulfonic acid under solvent-free conditions and ambient temperature
- Development of oxopyrrolidine-based anti-cancer compounds: DNA binding, in silico, cell line studies, drug-likeness and mechanism at supra-molecular level
- Clay and charcoal composites: characterisation and application of factorial design analysis for dye adsorption
- Role of thermoxidation and depolymerisation in the ageing of systems paper/gum arabic/historical ink
- Natural organic acids promoted Beckmann rearrangement: Green and expeditious synthesis of amides under solvent-free conditions