Home Role of thermoxidation and depolymerisation in the ageing of systems paper/gum arabic/historical ink
Article
Licensed
Unlicensed Requires Authentication

Role of thermoxidation and depolymerisation in the ageing of systems paper/gum arabic/historical ink

  • András Peller EMAIL logo , Milena Reháková , Michaela Ciglanská and Peter Šimon
Published/Copyright: December 20, 2013
Become an author with De Gruyter Brill

Abstract

The aim of this study was to assess the role and proportional representation of depolymerisation and thermoxidation reaction paths in the systems paper/gum arabic (GA)/historical ink during various accelerated ageing methods. The historical inks under study are iron-gall, bistre, and sepia. The results indicate that thermoxidation represents only a minor reaction path in the ageing of paper/GA/ink systems except for the iron-gall ink and the light-thermal method of accelerated ageing. The iron-gall ink accelerates both reaction paths of ageing, i.e. thermoxidation and depolymerisation; in this case, thermoxidation might become the prevailing degradation reaction path. For the sepia ink, an anti-depolymerisation stabilising effect in thermal methods of ageing has been detected. Considering the thermoxidation reaction path, the results even suggest that a compound preventing thermoxidation is formed during the thermally accelerated ageing in air and in 100 mg L−1 of NO2. In the light-thermal ageing, the most stable sample is the Whatman paper (W)/GA/bistre ink.

[1] ASTM International (2007). Standard test method for folding endurance of paper by the M.I.T. tester. ASTM D2176-97a. West Conshohocken, PA, USA: ASTM International. Search in Google Scholar

[2] Brunelle, R. L., & Reed, R. W. (1984). Forensic examination of ink and paper (pp. 9–42). Springfield, IL, USA: Charles C. Thomas Publisher. Search in Google Scholar

[3] Budrugeac, P. (2001). Lifetime prediction for polymers via the temperature of initial decomposition. Journal of Thermal Analysis and Calorimetry, 65, 309–312. DOI: 10.1023/a:1011569827970. http://dx.doi.org/10.1023/A:101156982797010.1023/A:1011569827970Search in Google Scholar

[4] Camuffo, D., Fassina, V., & Havermans, J. (Eds.) (2010). Basic environmental mechanisms affecting cultural heritage: Understanding deterioration mechanisms for conservation purposes (Cost Action D42: Chemical interactions between cultural artefacts and indoor environment (EnviArt)). Firenze, Italy: Nardini Editore. Search in Google Scholar

[5] Čeppan, M., Jančovičová, V., Reháková, M., & Buzinkay, A. (2008). Kinetic of degradation of historical documents containing iron-gall inks. Chemické Listy, 102, s989–s991. Search in Google Scholar

[6] Cibulková, Z., Šimon, P., Lehocký, P., & Balko, J. (2005). Antioxidant activity of p-phenylenediamines studied by DSC. Polymer Degradation and Stability, 87, 479–486. DOI: 10.1016/j.polymdegradstab.2004.10.004. http://dx.doi.org/10.1016/j.polymdegradstab.2004.10.00410.1016/j.polymdegradstab.2004.10.004Search in Google Scholar

[7] Emsley, A. M., Heywood, R. J., Ali, M., & Eley, C. M. (1997). On the kinetics of degradation of cellulose. Cellulose, 4, 1–5. DOI: 10.1023/a:1018408515574. http://dx.doi.org/10.1023/A:101840851557410.1023/A:1018408515574Search in Google Scholar

[8] Evans, R., & Wallis, A. F. A. (1987). Comparison of cellulose molecular weight determined by HPSEC and viscometry. In Proceedings of the 4th International Symposium on Wood, Fibre and Pulping Chemistry, April 27–30, 1987 (pp. 201–205). Paris, France: Eucepa. Search in Google Scholar

[9] Faubel, W., Staub, S., Simon, R., Heissler, S., Pataki, A., & Banik, G. (2007). Non-destructive analysis for the investigation of decomposition phenomena of historical manuscripts and prints. Spectrochimica Acta Part B: Atomic Spectroscopy, 62, 669–676. DOI: 10.1016/j.sab.2007.03.029. http://dx.doi.org/10.1016/j.sab.2007.03.02910.1016/j.sab.2007.03.029Search in Google Scholar

[10] Franceschi, E., Palazzi, D., & Pedemonte, E. (2001). Thermoanalytical contribution to the study on paper degradation. Characterisation of oxidised paper. Journal of Thermal Analysis and Calorimetry, 66, 349–358. DOI: 10.1023/a:1012428824378. http://dx.doi.org/10.1023/A:101242882437810.1023/A:1012428824378Search in Google Scholar

[11] Fratričová, M., Šimon, P., Schwarzer, P., & Wilde, H.W. (2006). Residual stability of polyurethane automotive coatings measured by chemiluminescence and equivalence of Xenotest and Solisi ageing tests. Polymer Degradation and Stability, 91, 94–100. DOI: 10.1016/j.polymdegradstab.2005.04.025. http://dx.doi.org/10.1016/j.polymdegradstab.2005.04.02510.1016/j.polymdegradstab.2005.04.025Search in Google Scholar

[12] Gambaro, A., Ganzerla, R., Fantin, M., Cappelletto, E., Piazza, R., & Cairns, W. R. L. (2009). Study of 19th century inks from archives in the Palazzo Ducale (Venice, Italy) using various analytical techniques. Microchemical Journal, 91, 202–208. DOI: 10.1016/j.microc.2008.11.002. http://dx.doi.org/10.1016/j.microc.2008.11.00210.1016/j.microc.2008.11.002Search in Google Scholar

[13] Giorgi, R., Dei, L., Ceccato, M., Schettino, C., & Baglioni, P. (2002). Nanotechnologies for conservation of cultural heritage: Paper and canvas deacidification. Langmuir, 18, 8198–8203. DOI: 10.1021/la025964d. http://dx.doi.org/10.1021/la025964d10.1021/la025964dSearch in Google Scholar

[14] Havlínová, B., Katuščák, S., Petrovičová, M., Maková, A., & Brezová, V. (2009). A study of mechanical properties of papers exposed to various methods of accelerated ageing. Part I. The effect of heat and humidity on original woodpulp papers. Journal of Cultural Heritage, 10, 222–231. DOI: 10.1016/j.culher.2008.07.009. http://dx.doi.org/10.1016/j.culher.2008.07.00910.1016/j.culher.2008.07.009Search in Google Scholar

[15] Hong, L., & Simon, J. D. (2006). Insight into the binding of divalent cations to sepia eumelanin from IR absorption spectroscopy. Photochemistry and Photobiology, 82, 1265–1269. DOI: 10.1562/2006-02-23-ra-809. http://dx.doi.org/10.1562/2006-02-23-RA-80910.1562/2006-02-23-RA-809Search in Google Scholar PubMed

[16] ISO (1981). Cellulose in dilute solutions — Determination of limiting viscosity number — Part 1: Method in cupriethylenediamine (CED) solution. ISO 5351-1: 1981. Geneva, Switzerland: International Organization for Standardization. Search in Google Scholar

[17] ISO (1988). Textiles — Tests for colour fastness — Part B02: Colour fastness to artificial light: Xenon arc fading lamp test. ISO 105-B02: 1988. Geneva, Switzerland: International Organization for Standardization. Search in Google Scholar

[18] ISO (2008). Paper and board — Accelerated ageing — Part 5: Exposure to elevated temperature at 100°C. ISO 5630-5: 2008. Geneva, Switzerland: International Organization for Standardization. Search in Google Scholar

[19] Kačík, F., Geffertová, J., & Kačíková, D. (2009). Characterisation of cellulose and pulp by the methods of gel permeation chromatography and viscometry. Acta Facultatis Xylologiae, 51, 93–103. (in Slovak) Search in Google Scholar

[20] Kanngießer, B., Hahn, O., Wilke, M., Nekat, B., Malzer, W., & Erko, A. (2004). Investigation of oxidation and migration processes of inorganic compounds in ink-corroded manuscripts. Spectrochimica Acta Part B: Atomic Spectroscopy, 59, 1511–1516. DOI: 10.1016/j.sab.2004.07.013. http://dx.doi.org/10.1016/j.sab.2004.07.01310.1016/j.sab.2004.07.013Search in Google Scholar

[21] Keheyan, Y., Eliazyan, G., Engel, P., & Rittmeier, B. (2009). Py/GC/MS characterisation of naturally and artificially aged inks and papers. Journal of Analytical and Applied Pyrolysis, 86, 192–199. DOI: 10.1016/j.jaap.2009.06.004. http://dx.doi.org/10.1016/j.jaap.2009.06.00410.1016/j.jaap.2009.06.004Search in Google Scholar

[22] Kolar, J., & Strlič, M. (2004). Evaluating the effects of treatments on iron gall ink corroded documents. A new analytical methodology. Restaurator, 25, 94–103. DOI: 10.1515/rest.2004.94. 10.1515/REST.2004.94Search in Google Scholar

[23] Kolar, J., Štolfa, A., Strlič, M., Pompe, M., Pihlar, B., Budnar, M., Simčič, J., & Reissland, B. (2006a). Historical iron gall ink containing documents-Properties affecting their condition. Analytica Chimica Acta, 555, 167–174. DOI: 10.1016/j.aca.2005.08.073. http://dx.doi.org/10.1016/j.aca.2005.08.07310.1016/j.aca.2005.08.073Search in Google Scholar

[24] Kolar, J., Strlič, M., & Pihlar, B. (2006b). Methodology and analytical techniques in studies of iron gall ink and its corrosion. In J. Kolar, & M. Strlič (Eds.), Iron gall inks: On manufacture, characterisation, degradation and stabilization (pp. 95–118). Ljubljana, Slovenia: National and University Library. Search in Google Scholar

[25] Kolar, J., & Strlič, M. (Eds.) (2006). Iron gall inks: On manufacture, characterisation, degradation and stabilisation. Ljubljana, Slovenia: National and University Library. Search in Google Scholar

[26] López-Montes, A., Blanc, R., Espejo, T., Navalón, A., & Vílchez, J. L. (2009). Characterization of sepia ink in ancient graphic documents by capillary electrophoresis. Microchemical Journal, 93, 121–126. DOI: 10.1016/j.microc.2009.05.008. http://dx.doi.org/10.1016/j.microc.2009.05.00810.1016/j.microc.2009.05.008Search in Google Scholar

[27] Malešič, J., Kočar, D., & Balažic Fabjan, A. (2012). Stabilization of copper- and iron-containing papers in mildly alkaline environment. Polymer Degradation and Stability, 97, 118–123. DOI: 10.1016/j.polymdegradstab.2011.09.025. http://dx.doi.org/10.1016/j.polymdegradstab.2011.09.02510.1016/j.polymdegradstab.2011.09.025Search in Google Scholar

[28] Neevel, J. G. (2006). The develpoment of in-situ methods for identification of iron gall inks. In J. Kolar, & M. Strlič (Eds.), Iron gall inks: On manufacture, characterisation, degradation and stabilisation (pp. 147–172). Ljubljana, Slovenia: National and University Library. Search in Google Scholar

[29] Neifar, A., Ben Rebah, F., Gargouri, A., & Abdelmouleh, A. (2009). Physicochemical characterization of Sepia officinalis ink and the effects of storage conditions on the coagulation process. Journal of The Marine Biological Association of The United Kingdom, 89, 803–807. DOI: 10.1017/s0025315408002798. http://dx.doi.org/10.1017/S002531540800279810.1017/S0025315408002798Search in Google Scholar

[30] Reissland, B. (1999). Ink corrosion aqueous and non-aqueous treatment of paper objects — state of the art. Restaurator, 20, 167–180. DOI: 10.1515/rest.1999.20.3-4.167. http://dx.doi.org/10.1515/rest.1999.20.3-4.16710.1515/rest.1999.20.3-4.167Search in Google Scholar

[31] Remazeilles, C., Rouchon-Quillet, V., & Bernard, J. (2004). In-fluence of gum arabic on iron gall ink corrosion. Part I: A laboratory samples study. Restaurator, 25, 220–232. DOI: 10.1515/rest.2004.220. http://dx.doi.org/10.1515/REST.2004.22010.1515/REST.2004.220Search in Google Scholar

[32] Remazeilles, C., Rouchon-Quillet, V., Bernard, J., Calligaro, T., Dran, C. J., Pichon, L., Salomon, J., & Eveno, M. (2005). Influence of gum arabic on iron-gall ink corrosion. Part II: Observation and elemental analysis of originals. Restaurator, 26, 118–133. Search in Google Scholar

[33] Rouchon-Quillet, V., Remazeilles, C., Nguyen, T. P., Bleton, J., & Tchapla, A. (2004). The impact of gum Arabic on iron gall ink corrosion. In J. Kolar, M. Strlic, & J. Havermans (Eds.), Proceedings of the International Conference Durability of Paper and Writing, November 16–19, 2004 (pp. 56–58). Ljubljana, Slovenia: National and University Library. Search in Google Scholar

[34] Senvaitiene, J., Beganskiene, A., & Kareiva, A. (2005). Spectroscopic evaluation and characterization of different historical writing inks. Vibrational Spectroscopy, 37, 61–67. DOI: 10.1016/j.vibspec.2004.06.004. http://dx.doi.org/10.1016/j.vibspec.2004.06.00410.1016/j.vibspec.2004.06.004Search in Google Scholar

[35] Šimon, P. (2006). Induction periods. Theory and applications. Journal of Thermal Analysis and Calorimetry, 84, 263–270. DOI: 10.1007/s10973-005-7204-z. http://dx.doi.org/10.1007/s10973-005-7204-z10.1007/s10973-005-7204-zSearch in Google Scholar

[36] Šimon, P., Hynek, D., Malíková, M., & Cibulková, Z. (2008). Extrapolation of accelerated thermooxidative tests to lower temperatures applying non-Arrhenius temperature functions. Journal of Thermal Analysis and Calorimetry, 93, 817–821. DOI: 10.1007/s10973-008-9328-0. http://dx.doi.org/10.1007/s10973-008-9328-010.1007/s10973-008-9328-0Search in Google Scholar

[37] Šimon, P. (2009). Material stability predictions applying a new non-Arrhenian temperature function. Journal of Thermal Analysis and Calorimetry, 97, 391–396. DOI: 10.1007/s10973-008-9627-5. http://dx.doi.org/10.1007/s10973-008-9627-510.1007/s10973-008-9627-5Search in Google Scholar

[38] Sivakova, B., Beganskiené, A., & Kareiva, A. (2008). Investigation of damaged paper by ink corrosion. Materials Science (MedŽiagotyra), 14, 51–54. Search in Google Scholar

[39] Strlič, M., Kolar, J., Žigon, M., & Pihlar, B. (1998). Evaluation of size-exclusion chromatography and viscometry for the determination of molecular masses of oxidised cellulose. Journal of Chromatography A, 805, 93–99. DOI: 10.1016/s0021-9673(98)00008-9. http://dx.doi.org/10.1016/S0021-9673(98)00008-910.1016/S0021-9673(98)00008-9Search in Google Scholar

[40] Tomasini, E. P., Halac, E. B., Reinoso, M., Di Liscia, E. J., & Maier, M. S. (2012). Micro-Raman spectroscopy of carbonbased black pigments. Journal of Raman Spectroscopy, 43, 1671–1675. DOI: 10.1002/jrs.4159. http://dx.doi.org/10.1002/jrs.415910.1002/jrs.4159Search in Google Scholar

[41] Ursescu, M., Măluan, T., & Ciovică, S. (2009). Iron gall inks influence on papers’ thermal degradation. FTIR spectroscopy applications. European Journal of Science and Theology, 5, 71–84. Search in Google Scholar

[42] Vizárová, K., Reháková, M., Kirschnerová, S., Peller, A., Šimon P., & Mikulášik, R. (2011). Stability studies of materials applied in the restoration of a baroque oil painting. Journal of Cultural Heritage, 12, 190–195. DOI: 10.1016/j.culher.2011.01.001. http://dx.doi.org/10.1016/j.culher.2011.01.00110.1016/j.culher.2011.01.001Search in Google Scholar

[43] Vizárová, K., Kirschnerová, S., Kačík, F., Briškárová, A., Šutý, Š., & Katuščák, S. (2012). Relationship between the decrease of degree of polymerisation of cellulose and the loss of groundwood pulp paper mechanical properties during accelerated ageing. Chemical Papers, 66, 1124–1129. DOI: 10.2478/s11696-012-0236-1. http://dx.doi.org/10.2478/s11696-012-0236-110.2478/s11696-012-0236-1Search in Google Scholar

[44] Winter, J., & FitzHugh, E. W. (2007). Pigments based on carbon. In B. H. Berrie (Ed.), Artists’ pigments (Vol. 4, pp. 1–37). Washington, DC, USA/London, UK: National Gallery of Art/Archetype. Search in Google Scholar

[45] Zervos, S. (2010). Natural and accelerated ageing of cellulose and paper: A literature review. In A. Lejeune, & T. Deprez (Eds.), Cellulose: Structure and properties, derivatives and industrial uses (pp. 155–203). Hauppauge, NY, USA: Nova Science Publishers. Search in Google Scholar

[46] Zou, X., Uesaka, T., & Gurnagul, N. (1996). Prediction of paper permanence by accelerated ageing. I. Kinetic analysis of the ageing process. Cellulose, 3, 243–267. DOI: 10.1007/bf02228805. http://dx.doi.org/10.1007/BF0222880510.1007/BF02228805Search in Google Scholar

Published Online: 2013-12-20
Published in Print: 2014-4-1

© 2013 Institute of Chemistry, Slovak Academy of Sciences

Articles in the same Issue

  1. Determination of mercury species using thermal desorption analysis in AAS
  2. Non-enzymatic hydrogen peroxide sensor based on a nanoporous gold electrode modified with platinum nanoparticles
  3. Production and application of amylases of Rhizopus oryzae and Rhizopus microsporus var. oligosporus from industrial waste in acquisition of glucose
  4. Effect of salicin on induction and carbon catabolite repression of endoxylanase synthesis in Penicillium janthinellum MTCC 10889
  5. Recovery of acetaminophen from aqueous solutions using a supported liquid membrane based on a quaternary ammonium salt as ionophore
  6. Enantioseparation of mandelic acid enantiomers in ionic liquid aqueous two-phase extraction systems
  7. Fatty acid methyl ester production from acid oil using silica sulfuric acid: Process optimization and reaction kinetics
  8. Mineral constituents of edible parasol mushroom Macrolepiota procera (Scop. ex Fr.) Sing and soils beneath its fruiting bodies collected from a rural forest area
  9. Evaluation of antioxidants in Dong quai (Angelica sinensis) and its dietary supplements
  10. Electrochemical storage properties of polyaniline-, poly(N-methylaniline)-, and poly(N-ethylaniline)-coated pencil graphite electrodes
  11. Controllable one-step synthesis of ZnO nanostructures using molybdophosphoric acid
  12. I2-mediated α-selective Ferrier glycosylation approach to synthesis of O-glycosyl amino acids
  13. Synthesis of 1,1-diacetates catalysed by silica-supported boron sulfonic acid under solvent-free conditions and ambient temperature
  14. Development of oxopyrrolidine-based anti-cancer compounds: DNA binding, in silico, cell line studies, drug-likeness and mechanism at supra-molecular level
  15. Clay and charcoal composites: characterisation and application of factorial design analysis for dye adsorption
  16. Role of thermoxidation and depolymerisation in the ageing of systems paper/gum arabic/historical ink
  17. Natural organic acids promoted Beckmann rearrangement: Green and expeditious synthesis of amides under solvent-free conditions
Downloaded on 27.11.2025 from https://www.degruyterbrill.com/document/doi/10.2478/s11696-013-0470-1/html?lang=en
Scroll to top button