Startseite Headspace single-drop microextraction coupled with gas chromatography electron capture detection of butanone derivative for determination of iodine in milk powder and urine
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Headspace single-drop microextraction coupled with gas chromatography electron capture detection of butanone derivative for determination of iodine in milk powder and urine

  • Meihua Hu EMAIL logo , Haiying Chen , Yong Jiang und Huifang Zhu
Veröffentlicht/Copyright: 4. Juni 2013
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

A new detection method using headspace single-drop microextraction (HS-SDME) coupled to gas chromatography (GC) was established to determine the iodine in milk powder and urine. The derivative from the reaction between iodine and butanone in the acidic media was extracted into a micro-drop then determined by GC-ECD. With the optimisation of HS-SDME and derivatisation, the calibration curve showed good linearity within the range of 0.004–0.1 μg mL−1 (0.004–0.1 μg g−1) (R 2 = 0.9991), and the limits of detection for milk powder and urine were 0.0018 μg g−1 and 0.36 μg L−1, respectively. The mean recoveries of milk powder and urine were 90.0–107 % and 89.4–101 % with mean RSD of 1.7–3.4 % and 2.7–3.3 %, respectively. This detection method affords a number of advantages, such as being simple, rapid, and inexpensive, with low organic solvent consumption, and is remarkably free from interference effects, rendering it an efficient method for the determination of iodine in milk powder and urine samples.

[1] Balme, S., & Gülaçar, F. O. (2012). Rapid screening of phytosterols in orange juice by solid-phase microextraction on polyacrylate fibre derivatisation and gas chromatographic-mass spectrometric. Food Chemistry, 132, 613–618. DOI: 10.1016/j.foodchem.2011.10.097. http://dx.doi.org/10.1016/j.foodchem.2011.10.09710.1016/j.foodchem.2011.10.097Suche in Google Scholar

[2] Bichsel, Y., & von Gunten, U. (1999). Determination of iodide and iodate by ion chromatography with postcalumn reaction and UV/Visible detection. Analytical Chemistry, 71, 34–38. DOI: 10.1021/ac980658j. http://dx.doi.org/10.1021/ac980658j10.1021/ac980658jSuche in Google Scholar

[3] Chen, S. H., Wu, H. L., Tanaka, M., Shono, T., & Funazo, K. (1987). Simultaneous gas chromatographic determination of iodide, nitrite, sulphide and thiocyanate anions by derivatization with pentafluorobenzyl bromide. Journal of Chromatography A, 396, 129–137. DOI: 10.1016/s0021-9673(01)94049-x. http://dx.doi.org/10.1016/S0021-9673(01)94049-X10.1016/S0021-9673(01)94049-XSuche in Google Scholar

[4] Colombini, V., Bancon-Montigny, C., Yang, L., Maxwell, P., Sturgeon, R. E., & Mester, Z. (2004). Headspace single-drop microextration for the detection of organotin compounds. Talanta, 63, 555–560. DOI: 10.1016/j.talanta.2003.11.035. http://dx.doi.org/10.1016/j.talanta.2003.11.03510.1016/j.talanta.2003.11.035Suche in Google Scholar

[5] Cussler, E. L. (1984). Diffusion and mass transfer in fluid systems. Cambridge, UK: Cambridge University Press. Suche in Google Scholar

[6] Das, P., Gupta, M., Jain, A., & Verma, K. K. (2004). Single drop microextraction or solid phase microextraction-gas chromatography-mass spectrometry for the determination of iodine in pharmaceuticals, iodized salt, milk powder and vegetables involving conversion into 4-iodo-N,N-dimethylaniline. Journal of Chromatography A, 1023, 33–39. DOI: 10.1016/j.chroma.2003.09.056. http://dx.doi.org/10.1016/j.chroma.2003.09.05610.1016/j.chroma.2003.09.056Suche in Google Scholar

[7] de Benoist, B., Andersson, M., Egli, I., Takkouche, B., & Allen, H. (2004). Iodine status worldwide. Geneva, Switzerland: World Health Organization. Suche in Google Scholar

[8] Delange, F. (1998). Risks and benefits of iodine supplementation. The Lancet, 351, 923–924. DOI: 10.1016/s0140-6736(05)60596-x. 10.1016/S0140-6736(05)60596-XSuche in Google Scholar

[9] DeLong, G. R., Leslie, P. W., Wang, S. H., Jiang, X. M., Zhang, M. L., Rakeman, M. A., Jiang, J. Y., Ma, T., & Cao, X. Y. (1997). Effect on infant mortality of iodination of irrigation water in a severely iodine-deficient area of China. The Lancet, 350, 771–773. DOI: 10.1016/s0140-6736(96)12365-5. http://dx.doi.org/10.1016/S0140-6736(96)12365-510.1016/S0140-6736(96)12365-5Suche in Google Scholar

[10] Doedens, D. J. (1985). Iodide determination in blood by gas chromatography. Journal of Analytical Toxicology, 9, 109–111. DOI: 10.1093/jat/9.3.109. http://dx.doi.org/10.1093/jat/9.3.10910.1093/jat/9.3.109Suche in Google Scholar

[11] Funazo, K., Tanaka, M., & Shono, T. (1981). Methylation of inorganic anions for gas chromatographic determination. Journal of Chromatography A, 211, 361–368. DOI: 10.1016/s0021-9673(00)83065-4. http://dx.doi.org/10.1016/S0021-9673(00)83065-410.1016/S0021-9673(00)83065-4Suche in Google Scholar

[12] Funazo, K., Tanaka, M., Morita, K., Kamino, M., & Shono, T. (1986). Pentafluorobenzyl p-toluenesulphonate as a new derivatizing reagent for electron-capture gas chromatographic determination of trace inorganic anions. Journal of Chromatography A, 354, 259–267. DOI: 10.1016/s0021-9673(01)87027-8. http://dx.doi.org/10.1016/S0021-9673(01)87027-810.1016/S0021-9673(01)87027-8Suche in Google Scholar

[13] Gilfedder, B. S., Althoff, F., Petri, M., & Biester, H. (2007). A thermo extraction-UV-VIS spectrophotometric method for total iodine quantification in soils and sediments. Analytical and Bioanalytical Chemistry, 389, 2323–2329. DOI: 10.1007/s00216-007-1621-4. http://dx.doi.org/10.1007/s00216-007-1621-410.1007/s00216-007-1621-4Suche in Google Scholar

[14] Górecki, T., & Pawliszyn, J. (1997). Effect of sample volume on quantitative analysis by solid-phase microextraction. Part 1. Theoretical considerations. Analyst, 122, 1079–1086. DOI: 10.1039/a701303e. http://dx.doi.org/10.1039/a701303e10.1039/a701303eSuche in Google Scholar

[15] Hashemi, M., Habibi, A., & Jahanshahi, N. (2011). Determination of cyclamate in artificial sweeteners and beverages using headspace single-drop microextraction and gas chromatography flame-ionisation detection. Food Chemistry, 124, 1258–1263. DOI: 10.1016/j.foodchem.2010.07.057. http://dx.doi.org/10.1016/j.foodchem.2010.07.05710.1016/j.foodchem.2010.07.057Suche in Google Scholar

[16] Hasty, R. A. (1971). A gas chromatographic method for the microdetermination of iodine. Microchimica Acta, 59, 348–352. DOI: 10.1007/bf01219634. http://dx.doi.org/10.1007/BF0121963410.1007/BF01219634Suche in Google Scholar

[17] Hasty, R. A. (1973). Gas chromatographic microdetermination of iodine by derivatization with ketones. Microchimica Acta, 61, 621–624. DOI: 10.1007/bf01218008. http://dx.doi.org/10.1007/BF0121800810.1007/BF01218008Suche in Google Scholar

[18] Hetzel, B. S. (1983). Iodine deficiency disorders (IDD) and their eradication. The Lancet, 322, 1126–1129. DOI: 10.1016/s0140-6736(83)90636-0. http://dx.doi.org/10.1016/S0140-6736(83)90636-010.1016/S0140-6736(83)90636-0Suche in Google Scholar

[19] Jeannot, M. A., & Cantwell, F. F. (1996). Solvent microextraction into a single drop. Analytical Chemistry, 68, 2236–2240. DOI: 10.1021/ac960042z. http://dx.doi.org/10.1021/ac960042z10.1021/ac960042zSuche in Google Scholar PubMed

[20] Jeannot, M. A., & Cantwell, F. F. (1997). Mass transfer characteristics of solvent extraction into a single drop at the tip of a syringe needle. Analytical Chemistry, 69, 235–239. DOI: 10.1021/ac960814r. http://dx.doi.org/10.1021/ac960814r10.1021/ac960814rSuche in Google Scholar

[21] Kardani, F., Daneshfar, A., & Sahrai, R. (2010). Determination of nicotine, anabasine, and cotinine in urine and saliva samples using single-drop microextraction. Journal of Chromatography B, 878, 2857–2862. DOI: 10.1016/j.jchromb.2010.08.041. http://dx.doi.org/10.1016/j.jchromb.2010.08.04110.1016/j.jchromb.2010.08.041Suche in Google Scholar PubMed

[22] Kolonel, L. N., Hankin, J. H., Wilkens, L. R., Fukunaga, F. H., & Hinds, M. W. (1990). An epidemiologic study of thyroid cancer in Hawaii. Cancer Causes & Control, 1, 223–234. DOI: 10.1007/bf00117474. http://dx.doi.org/10.1007/BF0011747410.1007/BF00117474Suche in Google Scholar PubMed

[23] Li, N., Deng, C. H., Yin, X. Y., Yao, N., Shen, X. Z., & Zhang, X. M. (2005). Gas chromatography-mass spectrometric analysis of hexanal and heptanal in human blood by headspace single-drop microextraction with droplet derivatization. Analytical Biochemistry, 342, 318–326. DOI: 10.1016/j.ab.2005.04.024. http://dx.doi.org/10.1016/j.ab.2005.04.02410.1016/j.ab.2005.04.024Suche in Google Scholar

[24] Ligor, T., & Buszewski, B. (2008). Single-drop microextraction and gas chromatography-mass spectrometry for the determination of volatile aldehydes in fresh cucumbers. Analytical and Bioanalytical Chemistry, 391, 2283–2289. DOI: 10.1007/s00216-008-2098-5. http://dx.doi.org/10.1007/s00216-008-2098-510.1007/s00216-008-2098-5Suche in Google Scholar

[25] López-Blanco, M. C., Blanco-Cid, S., Cancho-Grande, B., & Simal-Gándara, J. (2003). Application of single-drop mi croextraction and comparison with solid-phase microextraction and solid-phase extraction for the determination of α- and β-endosulfan in water samples by gas chromatography-electron-capture detection. Journal of Chromatography A, 984, 245–252 DOI: 10.1016/s0021-9673(02)01873-3. http://dx.doi.org/10.1016/S0021-9673(02)01873-310.1016/S0021-9673(02)01873-3Suche in Google Scholar

[26] Ministry of Health, China (2006). Chinese standard. Method for measuring of iodine in urine by As3+-Ce4+ catalytic spectrophotometry. WS/T 107-2006. Beijing, China: Ministry of Health. Suche in Google Scholar

[27] Ministry of Health, China (2010). Chinese standard. Determination of iodine in foods for infants and young children milk and milk products. GB 5413.23-2010. Beijing, China: Ministry of Health. Suche in Google Scholar

[28] Pena-Pereira, F., Lavilla, I., & Bendicho, C. (2009). Headspace single-drop microextraction coupled to microvolume UVVIS spectrophotometry for iodine determination. Analytica Chimica Acta, 631, 223–228. DOI: 10.1016/j.aca.2008.10.048. http://dx.doi.org/10.1016/j.aca.2008.10.04810.1016/j.aca.2008.10.048Suche in Google Scholar

[29] Reddy-Noone, K., Jain, A., & Verma, K. K. (2007). Liquidphase microextraction-gas chromatography-mass spectrometry for the determination of bromate, iodate, bromide and iodide in high-chloride matrix. Journal of Chromatography A, 1148, 145–151. DOI: 10.1016/j.chroma.2007.03.027. http://dx.doi.org/10.1016/j.chroma.2007.03.02710.1016/j.chroma.2007.03.027Suche in Google Scholar

[30] Shariati-Feizabadi, S., Yamini, Y., & Bahramifar, N. (2003). Headspace solvent microextraction and gas chromatographic determination of some polycyclic aromatic hydrocarbons in water samples. Analytica Chimica Acta, 489, 21–31. DOI: 10.1016/s0003-2670(03)00709-8. http://dx.doi.org/10.1016/S0003-2670(03)00709-810.1016/S0003-2670(03)00709-8Suche in Google Scholar

[31] Shi, X. Z., Song, S. Q., Sun, A. L., Liu, J. H., Li, D. X., & Chen, J. (2012). Rapid analysis of pyrethroid insecticides in aquaculture seawater samples via membrane-assisted solvent extraction coupled with gas chromatography-electron capture detection. Analyst, 137, 437–443. DOI: 10.1039/c1an15782e. http://dx.doi.org/10.1039/c1an15782e10.1039/C1AN15782ESuche in Google Scholar

[32] Tanaka, M., Funazo, K., Hirashima, T., & Shono, T. (1982). Ethylation of inorganic anions, phenols and carboxylic acids for gas chromatographic determination. Journal of Chromatography A, 234, 373–379. DOI: 10.1016/s0021-9673(00)81875-0. http://dx.doi.org/10.1016/S0021-9673(00)81875-010.1016/S0021-9673(00)81875-0Suche in Google Scholar

[33] Vidal, L., Canals, A., Kalogerakis, N., & Psillakis, E. (2005). Headspace single-drop microextraction for the analysis of chlorobenzenes in water samples. Journal of Chromatography A, 1089, 25–30. DOI: 10.1016/j.chroma.2005.06.058. http://dx.doi.org/10.1016/j.chroma.2005.06.05810.1016/j.chroma.2005.06.058Suche in Google Scholar PubMed

[34] Wang, L., Wang, Z., Li, X. Y., Zhang, H. H., Zhou, X., & Zhang, H. Q. (2010). Analysis of volatile compounds in the pericarp of Zanthoxylum bungeanum Maxim. by ultrasonic nebulization extraction coupled with headspace single-drop microextraction and GC-MS. Chromatographia, 71, 455–459. DOI: 10.1365/s10337-010-1497-x. 10.1365/s10337-010-1497-xSuche in Google Scholar

[35] Wang, T., Gao, X. L., Tong, J., & Chen, L. G. (2012). Determination of formaldehyde in beer based on cloud point extraction using 2,4-dinitrophenylhydrazine as derivative reagent. Food Chemistry, 131, 1577–1582. DOI: 10.1016/j.foodchem.2011.10.021. http://dx.doi.org/10.1016/j.foodchem.2011.10.02110.1016/j.foodchem.2011.10.021Suche in Google Scholar

[36] Yazdi, A. S., Banihashemi, S., & Es’haghi, Z. (2010). Determination of Hg(II) in natural waters by diphenylation by singledrop microextraction: GC. Chromatographia, 71, 1049–1054. DOI: 10.1365/s10337-010-1576-z. http://dx.doi.org/10.1365/s10337-010-1576-z10.1365/s10337-010-1576-zSuche in Google Scholar

Published Online: 2013-6-4
Published in Print: 2013-10-1

© 2013 Institute of Chemistry, Slovak Academy of Sciences

Heruntergeladen am 27.11.2025 von https://www.degruyterbrill.com/document/doi/10.2478/s11696-013-0391-z/pdf
Button zum nach oben scrollen