Headspace single-drop microextraction coupled with gas chromatography electron capture detection of butanone derivative for determination of iodine in milk powder and urine
Abstract
A new detection method using headspace single-drop microextraction (HS-SDME) coupled to gas chromatography (GC) was established to determine the iodine in milk powder and urine. The derivative from the reaction between iodine and butanone in the acidic media was extracted into a micro-drop then determined by GC-ECD. With the optimisation of HS-SDME and derivatisation, the calibration curve showed good linearity within the range of 0.004–0.1 μg mL−1 (0.004–0.1 μg g−1) (R 2 = 0.9991), and the limits of detection for milk powder and urine were 0.0018 μg g−1 and 0.36 μg L−1, respectively. The mean recoveries of milk powder and urine were 90.0–107 % and 89.4–101 % with mean RSD of 1.7–3.4 % and 2.7–3.3 %, respectively. This detection method affords a number of advantages, such as being simple, rapid, and inexpensive, with low organic solvent consumption, and is remarkably free from interference effects, rendering it an efficient method for the determination of iodine in milk powder and urine samples.
[1] Balme, S., & Gülaçar, F. O. (2012). Rapid screening of phytosterols in orange juice by solid-phase microextraction on polyacrylate fibre derivatisation and gas chromatographic-mass spectrometric. Food Chemistry, 132, 613–618. DOI: 10.1016/j.foodchem.2011.10.097. http://dx.doi.org/10.1016/j.foodchem.2011.10.09710.1016/j.foodchem.2011.10.097Search in Google Scholar
[2] Bichsel, Y., & von Gunten, U. (1999). Determination of iodide and iodate by ion chromatography with postcalumn reaction and UV/Visible detection. Analytical Chemistry, 71, 34–38. DOI: 10.1021/ac980658j. http://dx.doi.org/10.1021/ac980658j10.1021/ac980658jSearch in Google Scholar
[3] Chen, S. H., Wu, H. L., Tanaka, M., Shono, T., & Funazo, K. (1987). Simultaneous gas chromatographic determination of iodide, nitrite, sulphide and thiocyanate anions by derivatization with pentafluorobenzyl bromide. Journal of Chromatography A, 396, 129–137. DOI: 10.1016/s0021-9673(01)94049-x. http://dx.doi.org/10.1016/S0021-9673(01)94049-X10.1016/S0021-9673(01)94049-XSearch in Google Scholar
[4] Colombini, V., Bancon-Montigny, C., Yang, L., Maxwell, P., Sturgeon, R. E., & Mester, Z. (2004). Headspace single-drop microextration for the detection of organotin compounds. Talanta, 63, 555–560. DOI: 10.1016/j.talanta.2003.11.035. http://dx.doi.org/10.1016/j.talanta.2003.11.03510.1016/j.talanta.2003.11.035Search in Google Scholar
[5] Cussler, E. L. (1984). Diffusion and mass transfer in fluid systems. Cambridge, UK: Cambridge University Press. Search in Google Scholar
[6] Das, P., Gupta, M., Jain, A., & Verma, K. K. (2004). Single drop microextraction or solid phase microextraction-gas chromatography-mass spectrometry for the determination of iodine in pharmaceuticals, iodized salt, milk powder and vegetables involving conversion into 4-iodo-N,N-dimethylaniline. Journal of Chromatography A, 1023, 33–39. DOI: 10.1016/j.chroma.2003.09.056. http://dx.doi.org/10.1016/j.chroma.2003.09.05610.1016/j.chroma.2003.09.056Search in Google Scholar
[7] de Benoist, B., Andersson, M., Egli, I., Takkouche, B., & Allen, H. (2004). Iodine status worldwide. Geneva, Switzerland: World Health Organization. Search in Google Scholar
[8] Delange, F. (1998). Risks and benefits of iodine supplementation. The Lancet, 351, 923–924. DOI: 10.1016/s0140-6736(05)60596-x. 10.1016/S0140-6736(05)60596-XSearch in Google Scholar
[9] DeLong, G. R., Leslie, P. W., Wang, S. H., Jiang, X. M., Zhang, M. L., Rakeman, M. A., Jiang, J. Y., Ma, T., & Cao, X. Y. (1997). Effect on infant mortality of iodination of irrigation water in a severely iodine-deficient area of China. The Lancet, 350, 771–773. DOI: 10.1016/s0140-6736(96)12365-5. http://dx.doi.org/10.1016/S0140-6736(96)12365-510.1016/S0140-6736(96)12365-5Search in Google Scholar
[10] Doedens, D. J. (1985). Iodide determination in blood by gas chromatography. Journal of Analytical Toxicology, 9, 109–111. DOI: 10.1093/jat/9.3.109. http://dx.doi.org/10.1093/jat/9.3.10910.1093/jat/9.3.109Search in Google Scholar
[11] Funazo, K., Tanaka, M., & Shono, T. (1981). Methylation of inorganic anions for gas chromatographic determination. Journal of Chromatography A, 211, 361–368. DOI: 10.1016/s0021-9673(00)83065-4. http://dx.doi.org/10.1016/S0021-9673(00)83065-410.1016/S0021-9673(00)83065-4Search in Google Scholar
[12] Funazo, K., Tanaka, M., Morita, K., Kamino, M., & Shono, T. (1986). Pentafluorobenzyl p-toluenesulphonate as a new derivatizing reagent for electron-capture gas chromatographic determination of trace inorganic anions. Journal of Chromatography A, 354, 259–267. DOI: 10.1016/s0021-9673(01)87027-8. http://dx.doi.org/10.1016/S0021-9673(01)87027-810.1016/S0021-9673(01)87027-8Search in Google Scholar
[13] Gilfedder, B. S., Althoff, F., Petri, M., & Biester, H. (2007). A thermo extraction-UV-VIS spectrophotometric method for total iodine quantification in soils and sediments. Analytical and Bioanalytical Chemistry, 389, 2323–2329. DOI: 10.1007/s00216-007-1621-4. http://dx.doi.org/10.1007/s00216-007-1621-410.1007/s00216-007-1621-4Search in Google Scholar
[14] Górecki, T., & Pawliszyn, J. (1997). Effect of sample volume on quantitative analysis by solid-phase microextraction. Part 1. Theoretical considerations. Analyst, 122, 1079–1086. DOI: 10.1039/a701303e. http://dx.doi.org/10.1039/a701303e10.1039/a701303eSearch in Google Scholar
[15] Hashemi, M., Habibi, A., & Jahanshahi, N. (2011). Determination of cyclamate in artificial sweeteners and beverages using headspace single-drop microextraction and gas chromatography flame-ionisation detection. Food Chemistry, 124, 1258–1263. DOI: 10.1016/j.foodchem.2010.07.057. http://dx.doi.org/10.1016/j.foodchem.2010.07.05710.1016/j.foodchem.2010.07.057Search in Google Scholar
[16] Hasty, R. A. (1971). A gas chromatographic method for the microdetermination of iodine. Microchimica Acta, 59, 348–352. DOI: 10.1007/bf01219634. http://dx.doi.org/10.1007/BF0121963410.1007/BF01219634Search in Google Scholar
[17] Hasty, R. A. (1973). Gas chromatographic microdetermination of iodine by derivatization with ketones. Microchimica Acta, 61, 621–624. DOI: 10.1007/bf01218008. http://dx.doi.org/10.1007/BF0121800810.1007/BF01218008Search in Google Scholar
[18] Hetzel, B. S. (1983). Iodine deficiency disorders (IDD) and their eradication. The Lancet, 322, 1126–1129. DOI: 10.1016/s0140-6736(83)90636-0. http://dx.doi.org/10.1016/S0140-6736(83)90636-010.1016/S0140-6736(83)90636-0Search in Google Scholar
[19] Jeannot, M. A., & Cantwell, F. F. (1996). Solvent microextraction into a single drop. Analytical Chemistry, 68, 2236–2240. DOI: 10.1021/ac960042z. http://dx.doi.org/10.1021/ac960042z10.1021/ac960042zSearch in Google Scholar PubMed
[20] Jeannot, M. A., & Cantwell, F. F. (1997). Mass transfer characteristics of solvent extraction into a single drop at the tip of a syringe needle. Analytical Chemistry, 69, 235–239. DOI: 10.1021/ac960814r. http://dx.doi.org/10.1021/ac960814r10.1021/ac960814rSearch in Google Scholar
[21] Kardani, F., Daneshfar, A., & Sahrai, R. (2010). Determination of nicotine, anabasine, and cotinine in urine and saliva samples using single-drop microextraction. Journal of Chromatography B, 878, 2857–2862. DOI: 10.1016/j.jchromb.2010.08.041. http://dx.doi.org/10.1016/j.jchromb.2010.08.04110.1016/j.jchromb.2010.08.041Search in Google Scholar PubMed
[22] Kolonel, L. N., Hankin, J. H., Wilkens, L. R., Fukunaga, F. H., & Hinds, M. W. (1990). An epidemiologic study of thyroid cancer in Hawaii. Cancer Causes & Control, 1, 223–234. DOI: 10.1007/bf00117474. http://dx.doi.org/10.1007/BF0011747410.1007/BF00117474Search in Google Scholar PubMed
[23] Li, N., Deng, C. H., Yin, X. Y., Yao, N., Shen, X. Z., & Zhang, X. M. (2005). Gas chromatography-mass spectrometric analysis of hexanal and heptanal in human blood by headspace single-drop microextraction with droplet derivatization. Analytical Biochemistry, 342, 318–326. DOI: 10.1016/j.ab.2005.04.024. http://dx.doi.org/10.1016/j.ab.2005.04.02410.1016/j.ab.2005.04.024Search in Google Scholar
[24] Ligor, T., & Buszewski, B. (2008). Single-drop microextraction and gas chromatography-mass spectrometry for the determination of volatile aldehydes in fresh cucumbers. Analytical and Bioanalytical Chemistry, 391, 2283–2289. DOI: 10.1007/s00216-008-2098-5. http://dx.doi.org/10.1007/s00216-008-2098-510.1007/s00216-008-2098-5Search in Google Scholar
[25] López-Blanco, M. C., Blanco-Cid, S., Cancho-Grande, B., & Simal-Gándara, J. (2003). Application of single-drop mi croextraction and comparison with solid-phase microextraction and solid-phase extraction for the determination of α- and β-endosulfan in water samples by gas chromatography-electron-capture detection. Journal of Chromatography A, 984, 245–252 DOI: 10.1016/s0021-9673(02)01873-3. http://dx.doi.org/10.1016/S0021-9673(02)01873-310.1016/S0021-9673(02)01873-3Search in Google Scholar
[26] Ministry of Health, China (2006). Chinese standard. Method for measuring of iodine in urine by As3+-Ce4+ catalytic spectrophotometry. WS/T 107-2006. Beijing, China: Ministry of Health. Search in Google Scholar
[27] Ministry of Health, China (2010). Chinese standard. Determination of iodine in foods for infants and young children milk and milk products. GB 5413.23-2010. Beijing, China: Ministry of Health. Search in Google Scholar
[28] Pena-Pereira, F., Lavilla, I., & Bendicho, C. (2009). Headspace single-drop microextraction coupled to microvolume UVVIS spectrophotometry for iodine determination. Analytica Chimica Acta, 631, 223–228. DOI: 10.1016/j.aca.2008.10.048. http://dx.doi.org/10.1016/j.aca.2008.10.04810.1016/j.aca.2008.10.048Search in Google Scholar
[29] Reddy-Noone, K., Jain, A., & Verma, K. K. (2007). Liquidphase microextraction-gas chromatography-mass spectrometry for the determination of bromate, iodate, bromide and iodide in high-chloride matrix. Journal of Chromatography A, 1148, 145–151. DOI: 10.1016/j.chroma.2007.03.027. http://dx.doi.org/10.1016/j.chroma.2007.03.02710.1016/j.chroma.2007.03.027Search in Google Scholar
[30] Shariati-Feizabadi, S., Yamini, Y., & Bahramifar, N. (2003). Headspace solvent microextraction and gas chromatographic determination of some polycyclic aromatic hydrocarbons in water samples. Analytica Chimica Acta, 489, 21–31. DOI: 10.1016/s0003-2670(03)00709-8. http://dx.doi.org/10.1016/S0003-2670(03)00709-810.1016/S0003-2670(03)00709-8Search in Google Scholar
[31] Shi, X. Z., Song, S. Q., Sun, A. L., Liu, J. H., Li, D. X., & Chen, J. (2012). Rapid analysis of pyrethroid insecticides in aquaculture seawater samples via membrane-assisted solvent extraction coupled with gas chromatography-electron capture detection. Analyst, 137, 437–443. DOI: 10.1039/c1an15782e. http://dx.doi.org/10.1039/c1an15782e10.1039/C1AN15782ESearch in Google Scholar
[32] Tanaka, M., Funazo, K., Hirashima, T., & Shono, T. (1982). Ethylation of inorganic anions, phenols and carboxylic acids for gas chromatographic determination. Journal of Chromatography A, 234, 373–379. DOI: 10.1016/s0021-9673(00)81875-0. http://dx.doi.org/10.1016/S0021-9673(00)81875-010.1016/S0021-9673(00)81875-0Search in Google Scholar
[33] Vidal, L., Canals, A., Kalogerakis, N., & Psillakis, E. (2005). Headspace single-drop microextraction for the analysis of chlorobenzenes in water samples. Journal of Chromatography A, 1089, 25–30. DOI: 10.1016/j.chroma.2005.06.058. http://dx.doi.org/10.1016/j.chroma.2005.06.05810.1016/j.chroma.2005.06.058Search in Google Scholar PubMed
[34] Wang, L., Wang, Z., Li, X. Y., Zhang, H. H., Zhou, X., & Zhang, H. Q. (2010). Analysis of volatile compounds in the pericarp of Zanthoxylum bungeanum Maxim. by ultrasonic nebulization extraction coupled with headspace single-drop microextraction and GC-MS. Chromatographia, 71, 455–459. DOI: 10.1365/s10337-010-1497-x. 10.1365/s10337-010-1497-xSearch in Google Scholar
[35] Wang, T., Gao, X. L., Tong, J., & Chen, L. G. (2012). Determination of formaldehyde in beer based on cloud point extraction using 2,4-dinitrophenylhydrazine as derivative reagent. Food Chemistry, 131, 1577–1582. DOI: 10.1016/j.foodchem.2011.10.021. http://dx.doi.org/10.1016/j.foodchem.2011.10.02110.1016/j.foodchem.2011.10.021Search in Google Scholar
[36] Yazdi, A. S., Banihashemi, S., & Es’haghi, Z. (2010). Determination of Hg(II) in natural waters by diphenylation by singledrop microextraction: GC. Chromatographia, 71, 1049–1054. DOI: 10.1365/s10337-010-1576-z. http://dx.doi.org/10.1365/s10337-010-1576-z10.1365/s10337-010-1576-zSearch in Google Scholar
© 2013 Institute of Chemistry, Slovak Academy of Sciences
Articles in the same Issue
- Headspace single-drop microextraction coupled with gas chromatography electron capture detection of butanone derivative for determination of iodine in milk powder and urine
- Production of l-tryptophan by enantioselective hydrolysis of d,l-tryptophanamide using a newly isolated bacterium
- Copper hydride-catalyzed reduction of electron-deficient olefins
- Efficient photodegradation of resorcinol with Ag2O/ZnO nanorods heterostructure under a compact fluorescent lamp irradiation
- Comparison of anthocyanins present in grapes of Vitis vinifera L. varieties and interspecific hybrids grown in the Czech Republic
- Synthesis and characterisation of Cu(II), Ni(II), and Zn(II) complexes of furfural derived from aroylhydrazones bearing aliphatic groups and their interactions with DNA
- Efficacy of zinc and tourmaline in mitigating corrosion of carbon steel in non-flow mode
- Influence of the B-site cation nature on dielectric properties of Ca2XBiO6 (X = Dy, Fe, Al) double perovskite
- Stereoselective total synthesis of protected sulfamisterin and its analogues
- Investigation of 3,5-dichlorosalicylate-copper(II)-(3-pyridylmethanol or N,N′-diethylnicotinamide) complex systems by EPR spectroscopy
- Heavy-metal extraction capability of chalcogenoic aminophosphines derived from 1-amino-4-methylpiperazine
- Electrical conductivity of systems based on Na3AlF6-SiO2 melt
Articles in the same Issue
- Headspace single-drop microextraction coupled with gas chromatography electron capture detection of butanone derivative for determination of iodine in milk powder and urine
- Production of l-tryptophan by enantioselective hydrolysis of d,l-tryptophanamide using a newly isolated bacterium
- Copper hydride-catalyzed reduction of electron-deficient olefins
- Efficient photodegradation of resorcinol with Ag2O/ZnO nanorods heterostructure under a compact fluorescent lamp irradiation
- Comparison of anthocyanins present in grapes of Vitis vinifera L. varieties and interspecific hybrids grown in the Czech Republic
- Synthesis and characterisation of Cu(II), Ni(II), and Zn(II) complexes of furfural derived from aroylhydrazones bearing aliphatic groups and their interactions with DNA
- Efficacy of zinc and tourmaline in mitigating corrosion of carbon steel in non-flow mode
- Influence of the B-site cation nature on dielectric properties of Ca2XBiO6 (X = Dy, Fe, Al) double perovskite
- Stereoselective total synthesis of protected sulfamisterin and its analogues
- Investigation of 3,5-dichlorosalicylate-copper(II)-(3-pyridylmethanol or N,N′-diethylnicotinamide) complex systems by EPR spectroscopy
- Heavy-metal extraction capability of chalcogenoic aminophosphines derived from 1-amino-4-methylpiperazine
- Electrical conductivity of systems based on Na3AlF6-SiO2 melt