Home Anti-oxidative properties of bi-1,2,4-triazine bisulphides
Article
Licensed
Unlicensed Requires Authentication

Anti-oxidative properties of bi-1,2,4-triazine bisulphides

  • Paweł Piszcz EMAIL logo and Bronisław Głód
Published/Copyright: April 12, 2013
Become an author with De Gruyter Brill

Abstract

The anti-oxidative properties of bitriazines (BTs) were evaluated using HPLC and cyclic voltammetry. In the first case, a RP-HPLC assay was made, using a fluorescence detector, hydroxyl radicals generated in Fenton reaction, and terephthalic acid as a spin trap. The measurements were performed using aqueous or methanolic solutions. It was found that when the BTs were dissolved in water they were antioxidants, while dissolved in methanol they were pro-oxidants. Their different physicochemical properties in both solvents were confirmed by voltammetric, chromatographic as well as spectrophotometric measurements.

[1] da Silva, G., Bozzelli, J. W., & Asatryan, R. (2009). Hydroxyl radical initiated oxidation of S-triazine: Hydrogen abstraction is faster than hydroxyl addition. The Journal of Physical Chemistry A, 113, 8596–8606. DOI: 10.1021/jp904156r. http://dx.doi.org/10.1021/jp904156r10.1021/jp904156rSearch in Google Scholar

[2] do Nascimento, P. C., Bohrer, D., de Carvalho, L. M., Trevisan, J., Pilau, E. J., Vendrame, Z. B., & Dessuy, M. B. (2003). Determination of triazines in hemodialysis saline solutions by adsorptive stripping voltammetry after extraction in acetonitrile. Journal of the Brazilian Chemical Society, 14, 577–583. DOI: 10.1590/s0103-50532003000400014. http://dx.doi.org/10.1590/S0103-5053200300040001410.1590/S0103-50532003000400014Search in Google Scholar

[3] Głód, B. K., Piszcz, P., Czajka, K., & Zarzycki, P. K. (2011). A new total antioxidant potential measurements using RPHPLC assay with fluorescence detection. Journal of Chromatographic Science, 49, 401–404. DOI: 10.1093/chromsci/49.5.401. http://dx.doi.org/10.1093/chromsci/49.5.40110.1093/chromsci/49.5.401Search in Google Scholar

[4] Głód, B. K., Piszcz, P., Beta, A., & Zarzycki, P. K. (2012a). RP-HPLC, with fluorescence detection, assay for the determination of total antioxidant potential (TAP). Journal of Liquid Chromatography & Related Technologies, 35, 1194–1201. DOI: 10.1080/10826076.2011.619029. http://dx.doi.org/10.1080/10826076.2011.61902910.1080/10826076.2011.619029Search in Google Scholar

[5] Głód, B. K., Piszcz, P., Czajka, J., & Zarzycki, P. K. (2012b). Evaluation of total antioxidant potential of selected biogenic polyamines, non-alcoholic drinks and alcoholic beverages using improved RP-HPLC assay involving fluorescence detection. Food Chemistry, 131, 1029–1029. DOI: 10.1016/j.foodchem.2011.09.065. 10.1016/j.foodchem.2011.09.065Search in Google Scholar

[6] Gokel, G. W., Leevy, W. M., & Weber, M. E. (2004). Crown ethers: Sensors for ions and molecular scaffolds for materials and biological models. Chemical Reviews, 104, 2723–2750. DOI: 10.1021/cr020080k. http://dx.doi.org/10.1021/cr020080k10.1021/cr020080kSearch in Google Scholar

[7] Keefe, M. H., Benkstein, K. D., & Hupp, J. T. (2000). Luminescent sensor molecules based on coordinated metals: a review of recent developments. Coordination Chemistry Reviews, 205, 201–228. DOI: 10.1016/s0010-8545(00)00240-x. http://dx.doi.org/10.1016/S0010-8545(00)00240-X10.1016/S0010-8545(00)00240-XSearch in Google Scholar

[8] Ławecka, J., Olender, E., Piszcz, P., & Rykowski, A. (2008). Sequential homo-coupling Diels-Alder/retro Diels-Alder reaction of 5,5′-bi-1,2,4-triazine-containing thiamacrocycles as a new route to thiacrown ethers incorporating a 2,2′-bipyridine subunit. Tetrahedron Letters, 49, 723–726. DOI: 10.1016/j.tetlet.2007.11.138. http://dx.doi.org/10.1016/j.tetlet.2007.11.13810.1016/j.tetlet.2007.11.138Search in Google Scholar

[9] Ławecka J., Karczmarzyk, Z., Wolińska, E., Olender, E., Branowska, D., & Rykowski, A. (2011). A novel approach to conformationally strained 2,2′-bipyridine thiacrown ethers and their chiral sulfoxides by sequential homo-coupling/DA-rDA reaction of 5,5′-bi-1,2,4-triazine-containing thiamacrocycles. Tetrahedron, 67, 3098–3104. DOI: 10.1016/j.tet.2011.02.081. http://dx.doi.org/10.1016/j.tet.2011.02.08110.1016/j.tet.2011.02.081Search in Google Scholar

[10] Lehn, J. M. (1995). Supramolecular chemistry. Concepts and perspectives. Weinheim, Germany: VCH. http://dx.doi.org/10.1002/352760743910.1002/3527607439Search in Google Scholar

[11] Malkov, A. V., & Kočovský, P. (2007). Chiral N-oxides in asymmetric catalysis. European Journal of Organic Chemistry, 2007, 29–36. DOI: 10.1002/ejoc.200600474. 10.1002/ejoc.200600474Search in Google Scholar

[12] Pomeranc, D., Heitz, V., Chambrom, J. C., & Sauvage, J. P. (2001). Octahedral Fe(II) and Ru(II) complexes based on a new bis 1,10-phenanthroline ligand that imposes a well defined axis. Journal of the American Chemical Society, 123, 12215–12221. DOI: 10.1021/ja011250y. http://dx.doi.org/10.1021/ja011250y10.1021/ja011250ySearch in Google Scholar PubMed

Published Online: 2013-4-12
Published in Print: 2013-7-1

© 2013 Institute of Chemistry, Slovak Academy of Sciences

Downloaded on 27.11.2025 from https://www.degruyterbrill.com/document/doi/10.2478/s11696-013-0355-3/pdf
Scroll to top button