Home Life Sciences Mechanism of α-acetyl-γ-butyrolactone synthesis
Article
Licensed
Unlicensed Requires Authentication

Mechanism of α-acetyl-γ-butyrolactone synthesis

  • Wei Wang EMAIL logo , Sheng-Wan Zhang , Mei-Ping Li and Ying-Yu Ren
Published/Copyright: March 16, 2013
Become an author with De Gruyter Brill

Abstract

The mechanism of α-acetyl-γ-butyrolactone (ABL) synthesis from γ-butyrolactone (GBL) and ethyl acetate (EtOAc) was explored by detecting the material changes involved and the enthalpies of formation of the synthons, products, and possible intermediates were calculated using the density functional theory. GBL forms a carbanion of γ-butyrolactone by losing an α-H under strongly alkaline conditions. ABL is then obtained via two reaction mechanisms. One of the reaction mechanisms involves direct reaction of the carbanion of GBL with EtOAc to produce ABL. The other involves the formation of a carbanion of α-(2-hydroxy-tetrahydrofuran-2-yl)-γ-butyrolactone through the reaction of two molecules of GBL, and the subsequent combination of this anion with EtOAc to produce ABL. ABL is thus formed through the above two kinds of competitive ester condensation reactions. It is unnecessary to take into account synthons’ local thickness, and their self-condensation under these conditions. Both reactions of the carbanion of GBL with EtOAc and GBL are exothermic, so the control of their reaction rate is the key to their security. Considering the reasons above, this work applied synthon as the solvent, and avoided environmental pollution by alkylbenzene; also, accidents such as red material and fire were avoided by specific surface area of sodium metal control. Effective isolation of the organic and aqueous phases was performed using the salting out method. Thus, an environmentally friendly, safe, simple, and efficient new method for the synthesis of ABL with the yield higher than 90 % has been established.

[1] Borges dos Santos, R. M., Muralha, V. S. F., Correia, C. F., Guedes, R. C., Costa Cabral, B. J., & Martinho Simöes, J. A. (2002). S-H bond dissociation enthalpies in thiophenols: A time-resolved photoacoustic calorimetry and quantum chemistry study. The Journal of Physical Chemistry A, 106, 9883–9889. DOI: 10.1021/jp025677i. http://dx.doi.org/10.1021/jp025677i10.1021/jp025677iSearch in Google Scholar

[2] Elsasser, A. F., & Korte, T. J. (1993). U.S. Patent No. 5183908. Washington, DC, USA: U.S. Patent and Trademark Office. Search in Google Scholar

[3] Fascella, S., Cavallotti, C., Rota, R., & Carrà, S. (2004). Quantum chemistry investigation of key reactions involved in the formation of naphthalene and indene. The Journal of Physical Chemistry A, 108, 3829–3843. DOI: 10.1021/jp037518k. http://dx.doi.org/10.1021/jp037518k10.1021/jp037518kSearch in Google Scholar

[4] Francisco-Márquez, M., Alvarez-Idaboy, J. R., Galano, A., & Vivier-Bunge, A. (2008). Quantum chemistry and TST study of the mechanism and kinetics of the butadiene and isoprene reactions with mercapto radicals. Chemical Physics, 344, 273–280. DOI: 10.1016/j.chemphys.2008.01.024. http://dx.doi.org/10.1016/j.chemphys.2008.01.02410.1016/j.chemphys.2008.01.024Search in Google Scholar

[5] Fu, X. C., Shen, W. X., & Yao, T. Y. (1990). Physical chemistry (4th ed.). Beijing, China: Highter Education Press. Search in Google Scholar

[6] Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Montgomery, J. A., Jr., Vreven, T., Kudin, K. N., Burant, J. C., Millam, J. M., Iyengar, S. S., Tomasi, J., Barone, V., Mennucci, B., Cossi, M., Scalmani, G., Rega, N., Petersson, G. A., Nakatsuji, H., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Klene, M., Li, X., Knox, J. E., Hratchian, H. P., Cross, J. B., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J.W., Ayala, P. Y., Morokuma, K., Voth, G. A., Salvador, P., Dannenberg, J. J., Zakrzewski, V. G., Dapprich, S., Daniels, A. D., Strain, M. C., Farkas, O., Malick, D. K., Rabuck, A. D., Raghavachari, K., Foresman, J. B., Ortiz, J. V., Cui, Q., Baboul, A. G., Clifford, S., Cioslowski, J., Stefanov, B. B., Liu, G., Liashenko, A., Piskorz, P., Komaromi, I., Martin, R. L., Fox, D. J., Keith, T., Al-Laham, M. A., Peng, C. Y., Nanayakkara, A., Challacombe, M., Gill, P. M. W., Johnson, B., Chen, W., Wong, M. W., Gonzalez, C., & Pople, J. A. (2003). Gaussian 03, Revision A.1 [computer software]. Pittsburgh, PA, USA: Gaussian, Inc. Search in Google Scholar

[7] Ghule, V. D., Sarangapani, R., Jadhav, P. M., & Tewarri, S. P. (2011). Theoretical studies on polynitrobicyclo[1.1.1]pentanes in search of novel high energy density materials. Chemical Papers, 65, 380–388. DOI: 10.2478/s11696-011-0002-9. http://dx.doi.org/10.2478/s11696-011-0002-910.2478/s11696-011-0002-9Search in Google Scholar

[8] Jedliński, Z., Kowalczuk, M., Kurcok, P., Grzegorzek, M., & Ermel, J. (1987). A novel route to α-substituted Γ-lactones via lactone enolates. The Journal of Organic Chemistry, 52, 4601–4602. DOI: 10.1021/jo00229a030. http://dx.doi.org/10.1021/jo00229a03010.1021/jo00229a030Search in Google Scholar

[9] Koehler, G., & Uhlenbrock, W. (1998). U.S. Patent No. 5789603. Washington, DC, USA: U.S. Patent and Trademark Office. Search in Google Scholar

[10] Kiselev, V. G., & Gritsan, N. P. (2008). Theoretical study of the nitroalkane thermolysis. 1. Computation of the formation enthalpy of the nitroalkanes, their isomers and radical products. The Journal of Physical Chemistry A, 112, 4458–4464. DOI: 10.1021/jp077391p. http://dx.doi.org/10.1021/jp077391p10.1021/jp077391pSearch in Google Scholar PubMed

[11] Khrapkovskii, G. M., Tsyshevsky, R. V., Chachkov, D. V., Egorov, D. L., & Shamov, A. G. (2010). Formation enthalpies and bond dissociation enthalpies for C1–C4 mononitroalkanes by composite and DFT/B3LYP methods. Journal of Molecular Structure: THEOCHEM, 958, 1–6. DOI: 10.1016/j.theochem.2010.07.012. http://dx.doi.org/10.1016/j.theochem.2010.07.01210.1016/j.theochem.2010.07.012Search in Google Scholar

[12] Lipkin, M. A., Markevich, V. S., Kirsanov, A. T., & Yurkevich, A.M. (1988). The condensation of γ-butyrolactone with ethyl acetate. Pharmaceutical Chemistry Journal, 22, 911–915. 10.1007/BF00771645Search in Google Scholar

[13] Li, X., Zheng, Q. C., Zhang, J. L., & Zhang, H. X. (2011). Theoretical study on the mechanism of rearrangement reaction catalyzed by N 5-carboxyaminoimidazole ribonucleotide mutase. Computational and Theoretical Chemistry, 964, 77–82. DOI: 10.1016/j.comptc.2010.12.001. http://dx.doi.org/10.1016/j.comptc.2010.12.00110.1016/j.comptc.2010.12.001Search in Google Scholar

[14] Ochterski, J. W., Petersson, G. A., & Wiberg, K. B. (1995). A comparison of model chemistries. Journal of the American Chemical Society, 117, 11299–11308. DOI: 10.1021/ja00150a030. http://dx.doi.org/10.1021/ja00150a03010.1021/ja00150a030Search in Google Scholar

[15] Przybyłek, M., & Gaca, J. (2012). Reaction of aniline with ammonium persulphate and concentrated hydrochloric acid: Experimental and DFT studies. Chemical Papers, 66, 699–708. DOI: 10.2478/s11696-012-0163-1. http://dx.doi.org/10.2478/s11696-012-0163-110.2478/s11696-012-0163-1Search in Google Scholar

[16] Qian, Q. Q. (2008). China Patent No. 200810018421. Beijing, P.R. China: State Intellectual Property Office of the P.R.C. Search in Google Scholar

[17] Shafagh, I., Hughes, K. J., & Pourkashanian, M. (2011). Modified enthalpies of formation for hydrocarbons from DFT and ab initio thermal energies. Computational and Theoretical Chemistry, 964, 100–107. DOI: 10.1016/j.comptc.2010.12.005. http://dx.doi.org/10.1016/j.comptc.2010.12.00510.1016/j.comptc.2010.12.005Search in Google Scholar

[18] Vessecchi, R., & Galembeck, S. E. (2008). Evaluation of the enthalpy of formation, proton affinty, and gas-phase basicity of γ-butyrolactone and 2-pyrrolidinone by isodesmic reactions. The Journal of Physical Chemistry A, 112, 4060–4066. DOI: 10.1021/jp800427q. http://dx.doi.org/10.1021/jp800427q10.1021/jp800427qSearch in Google Scholar PubMed

[19] Waterlot, C., Couturier, D., Rigo, B., Ghinet, A., & De Backer, M. (2011). DFT calculations on the Friedel-Crafts benzylation of 1,4-dimethoxybenzene using ZnCl2 impregnated montmorillontie K10 — inversion of relative selectivites and reactivities of aryl halides. Chemical Papers, 65, 873–882. DOI: 10.2478/s11696-011-0073-7. http://dx.doi.org/10.2478/s11696-011-0073-710.2478/s11696-011-0073-7Search in Google Scholar

[20] Zhang, S. W., Wang, W., Wu, J. H., Qi, C. F., Fu, J. P., Li, M. P., Hu, Y. G., & Feng, Y. L. (2010a). China Patent No. 201010033349. Beijing, P.R. China: State Intellectual Property Office of the P.R.C. Search in Google Scholar

[21] Zhang, S. W., Wang, W., Qi, C. F., Fu, J. P., Li, M. P., Zhao, Z. H., Chen, X. M., Hu, Y. G., & Feng, Y. L. (2010b). China Patent No. 2010105344248. Beijing, P.R. China: State Intellectual Property Office of the P.R.C. Search in Google Scholar

Published Online: 2013-3-16
Published in Print: 2013-6-1

© 2013 Institute of Chemistry, Slovak Academy of Sciences

Downloaded on 2.2.2026 from https://www.degruyterbrill.com/document/doi/10.2478/s11696-013-0337-5/html?lang=en
Scroll to top button