Home Life Sciences Degradation products of proguanil — 4-chloroaniline and related components with regard to genotoxicity
Article
Licensed
Unlicensed Requires Authentication

Degradation products of proguanil — 4-chloroaniline and related components with regard to genotoxicity

  • Katharina Schulz EMAIL logo , Ulrich Oberdieck and Werner Weitschies
Published/Copyright: March 16, 2013
Become an author with De Gruyter Brill

Abstract

In the event of genotoxic impurities in drug products, knowledge of the origin and fate of these components is of particular importance. In the present study, commercially available proguanil tablets (Paludrine®) were investigated in respect of formation of the main degradation product, 4-chloroaniline (PCA), which is known to be genotoxic. The investigations made use of high performance liquid chromatography coupled with fluorescence detection (HPLC-FLD) and gas chromatography coupled with flame ionisation detection (GC-FID) systems. In addition, proposals for the structure of further proguanil degradation products were developed based on results obtained by mass spectroscopy (HPLC-MS). Database analysis using DEREK, MCASE, and Vitic was performed to obtain an initial toxicological evaluation of the proposed chemical structures. Finally, the absence of the newly established structures in stored proguanil tablets was verified.

[1] Bailey, F., Brittain, P. N., & Williamson, B. F. (1975). Automated chromatographic determination of chlorhexidine in pharmaceutical preparations. Journal of Chromatography A, 109, 305–312. DOI: 10.1016/s0021-9673(01)91803-5. http://dx.doi.org/10.1016/S0021-9673(01)91803-510.1016/S0021-9673(01)91803-5Search in Google Scholar

[2] Boehncke, A., Kielhorn, J., Könnecker, G., Pohlenz-Michel, C., & Mangelsdorf, I. (2003). Concise international chemical assessment document 48: 4-chloroaniline. Geneva, Switzerland: World Health Organization. Search in Google Scholar

[3] British Pharmacopoeia (2011). The British pharmacopoeia volume I & II: Medical and pharmaceutical substances, proguanil hydrochloride. London, UK: The Stationary Office. Search in Google Scholar

[4] Curd, F. H. S., & Rose, F. L. (1946). 149. Synthetic antimalarials. Part X. Some aryl-diguanide (“-biguanide”) derivates. Journal of the Chemical Society, 1946, 729–737. DOI: 10.1039/jr9460000729. http://dx.doi.org/10.1039/jr946000072910.1039/JR9460000729Search in Google Scholar

[5] European Medicines Agency (2006). Guideline on the limits of genotoxic impurities. London, UK: Commitee for medical products for human use. Search in Google Scholar

[6] Food and Drug Administration (2008). Guidance for industry, genotoxic and carcinogenic impurities in drug substances and products: Recommended approaches (draft guidance). Silver Spring, MD, USA: Center for drug evaluation and research. Search in Google Scholar

[7] Fernández-Alba, A. R., Hernando, M. D., Piedra, L., & Chisti, Y. (2002). Toxicity evaluation of single and mixed antifouling biocides measured with acute toxicity bioassays. Analytica Chimica Acta, 456, 303–312. DOI: 10.1016/s0003-2670(02)00037-5. http://dx.doi.org/10.1016/S0003-2670(02)00037-510.1016/S0003-2670(02)00037-5Search in Google Scholar

[8] Gavlick, W. K. (1992). High-performance liquid chromatographic analysis of chlorhexidine and p-chloroaniline using a specialty column and a photodiode-array detector. Journal of Chromatography A, 623, 375–380. DOI: 10.1016/0021-9673(92)80379-9. http://dx.doi.org/10.1016/0021-9673(92)80379-910.1016/0021-9673(92)80379-9Search in Google Scholar

[9] Goldman, D. S. (1988). Toxicology and carcinogenesis studies of monuron (CAS NO. 150-68-5) in F334/N rats and B6C3F1 mice (feed studies). National Toxicology Program, Technical Report Series No. 266. U.S. Department of Health and Human Services. Search in Google Scholar

[10] Holm, J. V., Rügge, K., Bjerg, P. L., & Christensen, T. H. (1995). Occurrence and distribution of pharmaceutical organic compounds in the groundwater downgradient of a land-fill (Grindsted, Denmark). Environmental Science & Technology, 29, 1415–1420. DOI: 10.1021/es00005a039. http://dx.doi.org/10.1021/es00005a03910.1021/es00005a039Search in Google Scholar

[11] Jackson, M. A., Stack, H. F., & Waters, M. D. (1993). The genetic toxicology of putative nongenotoxic carcinogens. Mutation Research/Reviews in Genetic Toxicology, 296, 241–277. DOI: 10.1016/0165-1110(93)90014-e. http://dx.doi.org/10.1016/0165-1110(93)90014-E10.1016/0165-1110(93)90014-ESearch in Google Scholar

[12] Johnson, R. R., Navone, R., & Larson, E. L. (1963). An unusual epidemic of methemoglobinemia. Pediatrics, 31, 222–225. 10.1542/peds.31.2.222Search in Google Scholar

[13] Judson, P. N., Cooke, P. A., Doerrer, N. G., Greene, N., Hanzlik, R. P., Hardy, C., Hartmann, A., Hinchliffe, D., Holder, J., Müller, L., Steger-Hartmann, T., Rothfuss, A., Smith, M., Thomas, K., Vessey, J. D., & Zeiger, E. (2005). Towards the creation of an international toxicology information centre. Toxicology, 213, 117–128. DOI: 10.1016/j.tox.2005.05.014. http://dx.doi.org/10.1016/j.tox.2005.05.01410.1016/j.tox.2005.05.014Search in Google Scholar PubMed

[14] Klopman, G. (1992). MULTICASE 1. A hierarchial computer automated structure evaluation program. Quantitative Structure-Activity Relationship, 11, 176–184. DOI: 10.1002/qsar.19920110208. http://dx.doi.org/10.1002/qsar.1992011020810.1002/qsar.19920110208Search in Google Scholar

[15] Malato, S., Cáceres, J., Fernández-Alba, A. R., Piedra, L., Hernando, M. D., Agüera, A., & Vial, J. (2003). Photocatalytic treatment of diuron by solar photocatalysis: Evaluation of main intermediates and toxicity. Environmental Science & Technology, 37, 2516–2524. DOI: 10.1021/es0261170. http://dx.doi.org/10.1021/es026117010.1021/es0261170Search in Google Scholar PubMed

[16] Marchant, C. A., Briggs, K. A., & Long, A. (2008). In silico tools for sharing data and knowledge on toxicity and metabolism: Derek for Windows, Meteor, and Vitic. Toxicology Mechanisms and Methods, 18, 177–187. DOI: 10.1080/15376510701857320. http://dx.doi.org/10.1080/1537651070185732010.1080/15376510701857320Search in Google Scholar

[17] McDonnell, G., & Russell, A. D. (1999). Antiseptics and disinfectants: Activity, action, and resistance. Clinical Microbiology Reviews, 12, 147–179. 10.1128/CMR.12.1.147Search in Google Scholar

[18] Moody, R. R., & Taylor, R. B. (1980). An HPLC assay for the determination of proguanil hydrochloride in tablets. International Journal of Pharmaceutics, 7, 177–178. DOI: 10.1016/0378-5173(80)90062-9. http://dx.doi.org/10.1016/0378-5173(80)90062-910.1016/0378-5173(80)90062-9Search in Google Scholar

[19] Müller, L., Fattore, E., & Benfenati, E. (1997). Determination of aromatic amines by solid-phase microextraction and gas chromatography-mass spectrometry in water samples. Journal of Chromatography A, 791, 221–230. DOI: 10.1016/s0021-9673(97)00795-4. http://dx.doi.org/10.1016/S0021-9673(97)00795-410.1016/S0021-9673(97)00795-4Search in Google Scholar

[20] Müller, L., Mauthe, R. J., Riley, C. M., Andino, M. M., De Antonis, D., Beels, C., DeGeorge, J., De Knaep, A. G. M., Ellison, D., Fagerland, J. A., Frank, R., Fritschel, B., Galloway, S., Harpur, E., Humfrey, C. D. N., Jacks, A. S., Jagota, N., Mackinnon, J., Mohan, G., Ness, D. K., O’Donovan, M. R., Smith, M. D., Vudathala, G., & Yotti, L. (2006). A rationale for determining, testing, and controlling specific impurities in pharmaceuticals that possess potential for genotoxicity. Regulatory Toxicology and Pharmacology, 44, 198–211. DOI: 10.1016/j.yrtph.2005.12.001. http://dx.doi.org/10.1016/j.yrtph.2005.12.00110.1016/j.yrtph.2005.12.001Search in Google Scholar

[21] Owoyale, J. A., & Elmarakby, Z. S. (1989). Effect of sunlight, ultraviolet irradiation and heat on proguanil. International Journal of Pharmaceutics, 50, 219–221. DOI: 10.1016/0378-5173(89)90125-7. http://dx.doi.org/10.1016/0378-5173(89)90125-710.1016/0378-5173(89)90125-7Search in Google Scholar

[22] Ridings, J. E., Barratt, M. D., Cary, R., Earnshaw, C. G., Eggington, C. E., Ellis, M. K., Judson, P. N., Langowski, J. J., Marchant, C. A., Payne, M. P., Watson, W. P., & Yih, T. D. (1996). Computer prediction of possible toxic action from chemical structure: an update on the DEREK system. Toxicology, 106, 267–279. DOI: 10.1016/0300-483x(95)03190-q. http://dx.doi.org/10.1016/0300-483X(95)03190-Q10.1016/0300-483X(95)03190-QSearch in Google Scholar

[23] Sanderson, D. M., & Earnshaw, C. G. (1991). Computer prediction of possible toxic action from chemical structure; the DEREK system. Human & Experimental Toxicology, 10, 261–273. DOI: 10.1177/096032719101000405. http://dx.doi.org/10.1177/09603271910100040510.1177/096032719101000405Search in Google Scholar

[24] Simon, D., Helliwell, S., & Robards, K. (1998). Analytical chemistry of chlorpyrifos and diuron in aquatic ecosystems. Analytica Chimica Acta, 360, 1–16. DOI: 10.1016/s0003-2670(97)00680-6. http://dx.doi.org/10.1016/S0003-2670(97)00680-610.1016/S0003-2670(97)00680-6Search in Google Scholar

[25] Sneader, W. (2006). Drugs originating from the screening of dyes. In W. Sneader (Ed.), Drug discovery: a history (pp. 375–402). Chichester, UK: Wiley. DOI: 10.1002/0470015535.ch27. http://dx.doi.org/10.1002/0470015535.ch2710.1002/0470015535.ch27Search in Google Scholar

[26] Taylor, R. B., Moody, R. R., Ochekpe, N. A., Low, A. S., & Harper, M. I. A. (1990). A chemical stability study of proguanil hydrochloride. International Journal of Pharmaceutics, 60, 185–190. DOI: 10.1016/0378-5173(90)90071-b. http://dx.doi.org/10.1016/0378-5173(90)90071-B10.1016/0378-5173(90)90071-BSearch in Google Scholar

[27] Tixier, C., Bogaerts, P., Sancelme, M., Bonnemoy, F., Twagilimana, L., Cuer, A., Bohatier, J., & Veschambre, H. (2000). Fungal biodegradation of a phenylurea herbicide, diuron: structure and toxicity of metabolites. Pest Management Science, 56, 455–462. DOI: 10.1002/(sici)1526-4998(200005)56:5〈455::aid-ps152〉3.0.co;2-z. http://dx.doi.org/10.1002/(SICI)1526-4998(200005)56:5<455::AID-PS152>3.0.CO;2-Z10.1002/(SICI)1526-4998(200005)56:5<455::AID-PS152>3.0.CO;2-ZSearch in Google Scholar

[28] Weiss, T., & Angerer, J. (2002). Simultaneous determination of various aromatic amines and metabolites of aromatic nitro compounds in urine for low level exposure using gas chromatography-mass spectrometry. Journal of Chromatography B, 778, 179–192. DOI: 10.1016/s0378-4347(01)00542-4. http://dx.doi.org/10.1016/S0378-4347(01)00542-410.1016/S0378-4347(01)00542-4Search in Google Scholar

[29] Yaffe, S. J., Bierman, C. W., Cann, H. M., Gold, A. P., Kenney, F. M., Riley, H. D., Schafer, I., Stern, L., Weiss, C. F., Shirkey, H. C., Ballin, J. C., Bishop, J., Farchione, L., Lockhart, J. D., & Sawchuk, S. (1971). Hazards of laundry products used in the newborn nursery. Pediatrics, 48, 988–989. 10.1542/peds.48.6.988Search in Google Scholar

[30] Yang, L. H., Ying, G. G., Su, H. C., Stauber, J. L., Adams, M. S., & Binet, M. T. (2008). Growth-inhibiting effects of 12 antibacterial agents and their mixtures on the freshwater microalga pseudokirchneriella subcapitata. Environmental Toxicology and Chemistry, 27, 1201–1208. DOI: 10.1897/07-471.1. http://dx.doi.org/10.1897/07-471.110.1897/07-471.1Search in Google Scholar

Published Online: 2013-3-16
Published in Print: 2013-6-1

© 2013 Institute of Chemistry, Slovak Academy of Sciences

Downloaded on 2.2.2026 from https://www.degruyterbrill.com/document/doi/10.2478/s11696-013-0333-9/html?lang=en
Scroll to top button