Home Spectral analysis of naringenin deprotonation in aqueous ethanol solutions
Article
Licensed
Unlicensed Requires Authentication

Spectral analysis of naringenin deprotonation in aqueous ethanol solutions

  • Ali Farajtabar EMAIL logo and Farrokh Gharib
Published/Copyright: February 14, 2013
Become an author with De Gruyter Brill

Abstract

The deprotonation of 5,7-dihydroxy-2-(4-hydroxyphenyl)chroman-4-one (naringenin) was studied in aqueous solutions of ethanol and 0.1 mol L−1 sodium perchlorate at 25°C. The chemical species that contributed to deprotonation were evaluated together with their pure spectral characteristics and concentration profiles by some chemometric methods. The deprotonation constants assigned by pK 1, pK 2, and pK 3 were determined by multivariate curve analysis of spectral data at different pcH values. The pure spectral analysis concordant with the theoretical prediction of deprotonation constants indicates that the acidity of hydroxyl groups in naringenin decreases in the order: 7-OH, 4′-OH, 5-OH. The effects of the solvent on deprotonation were analysed in terms of the linear solvation energy relationships using the model of Kamlet, Abboud, and Taft (KAT). Multiple linear regressions were aimed towards correlating the deprotonation constants with the microscopic parameters containing hydrogen-bond acidity (α), dipolarity/polarisability (π*), and hydrogen-bond basicity (β). The most significant parameter was found to be the hydrogen-bond acidity of binary mixtures.

[1] Afanas’ev, I. B., Ostrachovitch, E. A., Abramova, N. E., & Korkina, L. G. (1995). Different antioxidant activities of bioflavonoid rutin in normal and ironoverloading rats. Biochemical Pharmacology, 50, 627–635. DOI: 10.1016/0006-2952(95)00173-w. http://dx.doi.org/10.1016/0006-2952(95)00173-W10.1016/0006-2952(95)00173-WSearch in Google Scholar

[2] Agrawal, P. K., & Schneider, H. J. (1983). Deprotonation induced 13C NMR shifts in phenols and flavonoids. Tetrahedron Letters, 24, 177–180. DOI: 10.1016/s0040-4039(00)81359-3. http://dx.doi.org/10.1016/S0040-4039(00)81359-310.1016/S0040-4039(00)81359-3Search in Google Scholar

[3] Airinei, A., Rusu, E., & Dorohoi, D. (2001). Solvent influence on the electronic absorption spectra of some azoaromatic compounds. Spectroscopy Letters, 34, 65–74. DOI: 10.1081/sl-100001452. http://dx.doi.org/10.1081/SL-10000145210.1081/SL-100001452Search in Google Scholar

[4] Alemán, C. (2000). Acid/base properties of flavonoids hydroxylated at positions 2 and 3: a novel quantum mechanical study in gas-phase and solution. Journal of Molecular Structure: THEOCHEM, 528, 65–73. DOI: 10.1016/s0166-1280(99)00407-8. http://dx.doi.org/10.1016/S0166-1280(99)00407-810.1016/S0166-1280(99)00407-8Search in Google Scholar

[5] Anouar, E. H., Gierschner, J., Duroux, J. L., & Trouillas, P. (2012). UV/Visible spectra of natural polyphenols: A timedependent density functional theory study. Food Chemistry, 131, 79–89. DOI: 10.1016/j.foodchem.2011.08.034. http://dx.doi.org/10.1016/j.foodchem.2011.08.03410.1016/j.foodchem.2011.08.034Search in Google Scholar

[6] Beltrán, J. L., Codony, R., & Prat, M. D. (1993). Evaluation of stability constants from multi-wavelength absorbance data: program STAR. Analytica Chimica Acta, 276, 441–454. DOI: 10.1016/0003-2670(93)80415-h. http://dx.doi.org/10.1016/0003-2670(93)80415-H10.1016/0003-2670(93)80415-HSearch in Google Scholar

[7] Billo, E. J. (2001). Excel for chemists: A comprehensive guide. Weinheim, Germany: Wiley. http://dx.doi.org/10.1002/047122058210.1002/0471220582Search in Google Scholar

[8] Brereton, R. G. (2003). Chemometrics: data analysis for the laboratory and chemical plant. Chichester, UK: Wiley. 10.1002/0470863242Search in Google Scholar

[9] Cushnie, T. P. T., & Lamb, A. J. (2005). Antimicrobial activity of flavonoids. International Journal of Antimicrobial Agents, 26, 343–356. DOI: 10.1016/j.ijantimicag.2005.09.002. http://dx.doi.org/10.1016/j.ijantimicag.2005.09.00210.1016/j.ijantimicag.2005.09.002Search in Google Scholar PubMed PubMed Central

[10] Cushnie, T. P. T., & Lamb, A. J. (2011). Recent advances in understanding the antibacterial properties of flavonoids. International Journal of Antimicrobial Agents, 38, 99–107. DOI: 10.1016/j.ijantimicag.2011.02.014. http://dx.doi.org/10.1016/j.ijantimicag.2011.02.01410.1016/j.ijantimicag.2011.02.014Search in Google Scholar PubMed

[11] Elbergali, A., Nygren, J., & Kubista, M. (1999). An automated procedure to predict the number of components in spectroscopic data. Analytica Chimica Acta, 379, 143–158. DOI: 10.1016/s0003-2670(98)00640-0. http://dx.doi.org/10.1016/S0003-2670(98)00640-010.1016/S0003-2670(98)00640-0Search in Google Scholar

[12] Farajtabar, A., Jaberi, F., & Gharib, F. (2001). Preferential salvation and solvation shell composition of free base and protonated 5, 10, 15, 20-tetrakis(4-sulfonatophenyl)porphyrin in aqueous organic mixed solvents. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 83, 213–220. DOI: 10.1016/j.saa.2011.08.020. http://dx.doi.org/10.1016/j.saa.2011.08.02010.1016/j.saa.2011.08.020Search in Google Scholar

[13] Farajtabar, A., & Gharib, F. (2010a). Solvent effect on protonation constants of salicylic acid in mixed aqueous organic solutions of DMSO. Monatshefte für Chemie — Chemical Monthly, 141, 381–386. DOI: 10.1007/s00706-010-0277-5. http://dx.doi.org/10.1007/s00706-010-0277-510.1007/s00706-010-0277-5Search in Google Scholar

[14] Farjtabar, A., & Gharib, F. (2010b). Solvent effect on protonation constants of 5,10,15,20-tetrakis(4-sulfonatophenyl)porphyrin in different aqueous solutions of methanol and ethanol. Journal of Solution Chemistry, 39, 231–244. DOI: 10.1007/s10953-010-9496-y. http://dx.doi.org/10.1007/s10953-010-9496-y10.1007/s10953-010-9496-ySearch in Google Scholar

[15] Favaro, G., Clementi, C., Romani, A., & Vickackaite, V. (2007). Acidichromism and ionochromism of luteolin and apigenin, the main components of the naturally occurring yellow weld: a spectrophotometric and fluorimetric study. Journal of Fluorescence, 17, 707–714. DOI: 10.1007/s10895-007-0222-0. http://dx.doi.org/10.1007/s10895-007-0222-010.1007/s10895-007-0222-0Search in Google Scholar

[16] Fiorucci, S., Golebiowski, J., Cabrol-Bass, D., & Antonczak, S. (2007). DFT Study of quercetin activated forms involved in antiradical, antioxidant, and prooxidant biological processes. Journal of Agricultural and Food Chemistry, 55, 903–911. DOI: 10.1021/jf061864s. http://dx.doi.org/10.1021/jf061864s10.1021/jf061864sSearch in Google Scholar

[17] Gran, G. (1952). Determination of the equivalence point in potentiometric titrations. Part II. Analyst, 77, 661–671. DOI: 10.1039/an9527700661. http://dx.doi.org/10.1039/an952770066110.1039/an9527700661Search in Google Scholar

[18] Harborne, J. B., & Baxter, H. (1999). The handbook of natural flavonoids. Chichester, UK: Wiley. Search in Google Scholar

[19] Harborne, J. B., & Williams, C. A. (2000). Advances in flavonoid research since 1992. Phytochemistry, 55, 481–504. DOI: 10.1016/s0031-9422(00)00235-1. http://dx.doi.org/10.1016/S0031-9422(00)00235-110.1016/S0031-9422(00)00235-1Search in Google Scholar

[20] Hilal, S. H., Carreira, A., & Karikhoff, S. W. (1994). Estimation of chemical reactivity parameters and physical properties of organic molecules using SPARC. In P. Politzer & J. S. Murray (Eds.), Quantitative treatment of solute/solvent interactions. Amsterdam, The Netherlands: Elsevier. Search in Google Scholar

[21] Hilal, S. H., Karickhoff, S. W., & Carreira, L. A. (2004). Prediction of the solubility, activity coefficient and liquid/liquid partition coefficient of organic compounds. QSAR & Combinatorial Science, 23, 709–720. DOI: 10.1002/qsar.200430866. http://dx.doi.org/10.1002/qsar.20043086610.1002/qsar.200430866Search in Google Scholar

[22] Jovanovic, S. V., Steenken, S., Tosic, M., Marjanovic, B., & Simic, M. G. (1994). Flavonoids as antioxidants. Journal of the American Chemical Society, 116, 4846–4851. DOI: 10.1021/ja00090a032. http://dx.doi.org/10.1021/ja00090a03210.1021/ja00090a032Search in Google Scholar

[23] Justino, G. C., & Vieira, A. J. S. C. (2010). Antioxidant mechanisms of Quercetin and Myricetin in the gas phase and in solution — a comparison and validation of semi-empirical methods. Journal of Molecular Modeling, 16, 863–876. DOI: 10.1007/s00894-009-0583-1. http://dx.doi.org/10.1007/s00894-009-0583-110.1007/s00894-009-0583-1Search in Google Scholar

[24] Klein, E., Lukeš, V., & Ilčin, M. (2007). DFT/B3LYP study of tocopherols and chromans antioxidant action energetics. Chemical Physics, 336, 51–57. DOI: 10.1016/j.chemphys.2007.05.007. http://dx.doi.org/10.1016/j.chemphys.2007.05.00710.1016/j.chemphys.2007.05.007Search in Google Scholar

[25] Kron, I., Pudychova-Chovanova, Z., Velika, B., Guzy, J., & Perjesi, P. (2012). (E)-2-Benzylidenebenzocyclanones, part VIII: spectrophotometric determination of pKa values of some natural and synthetic chalcones and their cyclic analogues. Monatshefte für Chemie — Chemical Monthly, 143, 13–17. DOI: 10.1007/s00706-011-0633-0. http://dx.doi.org/10.1007/s00706-011-0633-010.1007/s00706-011-0633-0Search in Google Scholar

[26] Lemańska, K., Szymusiak, H., Tyrakowska, B., Zieliński, R., Soffers, A. E. M. F., & Rietjens, I. M. C. M. (2001). The influence of pH on antioxidant properties and the mechanism of antioxidant action of hydroxyflavones. Free Radical Biology and Medicine, 31, 869–881. DOI: 10.1016/s0891-5849(01)00638-4. http://dx.doi.org/10.1016/S0891-5849(01)00638-410.1016/S0891-5849(01)00638-4Search in Google Scholar

[27] Leopoldini, M., Pitarch, I. P., Russo, N., & Toscano, M. (2004). Structure, conformation, and electronic properties of apigenin, luteolin, and taxifolin antioxidants. A first principle theoretical study. Journal of Physical Chemistry A, 108, 92–96. DOI: 10.1021/jp035901j. http://dx.doi.org/10.1021/jp035901j10.1021/jp035901jSearch in Google Scholar

[28] Leopoldini, M., Russo, N., & Toscano, M. (2006). Gas and liquid phase acidity of natural antioxidants. Journal of Agricultural and Food Chemistry, 54, 3078–3085. DOI: 10.1021/jf053180a. http://dx.doi.org/10.1021/jf053180a10.1021/jf053180aSearch in Google Scholar PubMed

[29] Litwinienko, G., & Ingold, K. U. (2007). Solvent effects on the rates and mechanisms of reaction of phenols with free radicals. Accounts of Chemical Research, 40, 222–230. DOI: 10.1021/ar0682029. http://dx.doi.org/10.1021/ar068202910.1021/ar0682029Search in Google Scholar PubMed

[30] Malinowski, E. R. (1991). Factor analysis in chemistry (2nd ed.). New York, NY, USA: Wiley. Search in Google Scholar

[31] Marcus, Y. (1994). The use of chemical probes for the characterization of solvent mixtures. Part 2. Aqueous mixtures. Journal of the Chemical Society, Perkin Transactions, 2, 1751–1758. DOI: 10.1039/p29940001751. 10.1039/p29940001751Search in Google Scholar

[32] Mezzetti, A., Protti, S., Lapouge, C., & Cornard, J. P. (2011). Protic equilibria as the key factor of quercetin emission in solution. Relevance to biochemical and analytical studies. Physical Chemistry Chemical Physics, 13, 6858–6864. DOI: 10.1039/c0cp00714e. http://dx.doi.org/10.1039/c0cp00714e10.1039/c0cp00714eSearch in Google Scholar PubMed

[33] Mielczarek, C. (2005). Acid-base properties of selected flavonoid glycosides. European Journal of Pharmaceutical Sciences, 25, 273–279. DOI: 10.1016/j.ejps.2005.03.002. http://dx.doi.org/10.1016/j.ejps.2005.03.00210.1016/j.ejps.2005.03.002Search in Google Scholar PubMed

[34] Mira, L., Fernandez, M. T., Santos, M., Rocha, R., Floręncio, M. H., & Jennings, K. R. (2002). Interactions of flavonoids with iron and copper ions: A mechanism for their antioxidant activity. Free Radical Research, 36, 1199–1208. DOI: 10.1080/1071576021000016463. http://dx.doi.org/10.1080/107157602100001646310.1080/1071576021000016463Search in Google Scholar

[35] Musialik, M., Kuzmicz, R., Pawłowski, T. S., & Litwinienko, G. (2009). Acidity of hydroxyl groups: An overlooked influence on antiradical properties of flavonoids. Journal of Organic Chemistry, 74, 2699–2709. DOI: 10.1021/jo802716v. http://dx.doi.org/10.1021/jo802716v10.1021/jo802716vSearch in Google Scholar

[36] Reichardt, C. (2004). Solvents and solvent effects in organic chemistry. Weinheim, Germany: Wiley. Search in Google Scholar

[37] Richardson, G. A., El-Rafey, M. S., & Long, M. L. (1947). Flavones and flavone derivatives as antioxidants. Journal of Dairy Science, 30, 397–413. DOI: 10.3168/jds.s0022-0302(47)92364-3. http://dx.doi.org/10.3168/jds.S0022-0302(47)92364-310.3168/jds.S0022-0302(47)92364-3Search in Google Scholar

[38] Rong, Y., Wang, Z. W., Wu, J. H., & Zhao, B. (2012). A theoretical study on cellular antioxidant activity of selected flavonoids. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 93, 235–239. DOI: 10.1016/j.saa.2012.03.008. http://dx.doi.org/10.1016/j.saa.2012.03.00810.1016/j.saa.2012.03.008Search in Google Scholar PubMed

[39] Ruela de Sousa, R. R., Souza Queiroz, K. C., Santos Souza, A. C., Gurgueira, S. A., Augusto, A. C., Miranda, M. A., Poppelenbosch, M. P., Ferreira, C. V., & Aoyama, H. (2007). Phosphoprotein levels, MAPK activities and NFKB expression are affected by fisetin. Journal of Enzyme Inhibition and Medicinal Chemistry, 22, 439–444. DOI: 10.1080/14756360601162063. http://dx.doi.org/10.1080/1475636060116206310.1080/14756360601162063Search in Google Scholar PubMed

[40] Şanli, S., Altun, Y., Şanli, N., Alsancak, G., & Beltran, J. L. (2009). Solvent effects on pK a values of some substituted sulfonamides in acetonitrile-water binary mixtures by the UVspectroscopy method. Journal of Chemical & Engineering Data, 54, 3014–3021. DOI: 10.1021/je9000813. http://dx.doi.org/10.1021/je900081310.1021/je9000813Search in Google Scholar

[41] Schuier, M., Sies, H., Illek, B., & Fischer, H. (2005). Cocoarelated flavonoids inhibit CFTR-mediated chloride transport across T84 human colon epithelia. Journal of Nutrition, 135, 2320–2325. 10.1093/jn/135.10.2320Search in Google Scholar PubMed

[42] Serra, H., Mendes, T., Bronze, M. R., & Simplício, A. L. (2008). Prediction of intestinal absorption and metabolism of pharmacologically active flavones and flavanones. Bioorganic & Medicinal Chemistry, 16, 4009–4018. DOI: 10.1016/j.bmc.2008.01.028. http://dx.doi.org/10.1016/j.bmc.2008.01.02810.1016/j.bmc.2008.01.028Search in Google Scholar PubMed

[43] Tommasini, S., Calabrò, M. L., Raneri, D., Ficarra, P., & Ficarra, R. (2004). Combined effect of pH and polysorbates with cyclodextrins on solubilization of naringenin. Journal of Pharmaceutical and Biomedical Analysis, 36, 327–333. DOI: 10.1016/j.jpba.2004.06.013. http://dx.doi.org/10.1016/j.jpba.2004.06.01310.1016/j.jpba.2004.06.013Search in Google Scholar PubMed

[44] Vaganek, A., Rimarcik, J., Lukes, V., & Klein, E. (2012). On the energetics of homolytic and heterolytic OAH bond cleavage in flavonoids. Computational and Theoretical Chemistry, 991, 192–200. DOI: 10.1016/j.comptc.2012.04.014. http://dx.doi.org/10.1016/j.comptc.2012.04.01410.1016/j.comptc.2012.04.014Search in Google Scholar

[45] Webb, M. R., & Ebeler, S. E. (2004). Comparative analysis of topoisomerase IB inhibition and DNA intercalation by flavonoids and similar compounds: structural determinates of activity. Biochemical Journal, 384, 527–541. DOI: 10.1042/bj20040474. http://dx.doi.org/10.1042/BJ2004047410.1042/BJ20040474Search in Google Scholar PubMed PubMed Central

[46] Wilcox, L. J., Borradaile, N. M., & Huff, M. W. (1999). Antiatherogenic properties of naringenin, a citrus flavonoid. Cardiovascular Drug Reviews, 17, 160–178. DOI: 10.1111/j.1527-3466.1999.tb00011.x. http://dx.doi.org/10.1111/j.1527-3466.1999.tb00011.x10.1111/j.1527-3466.1999.tb00011.xSearch in Google Scholar

Published Online: 2013-2-14
Published in Print: 2013-5-1

© 2013 Institute of Chemistry, Slovak Academy of Sciences

Downloaded on 30.9.2025 from https://www.degruyterbrill.com/document/doi/10.2478/s11696-013-0309-9/html?lang=en
Scroll to top button