Startseite Synthesis, characterisation, and DC conductivity of polyaniline-lead oxide composites
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Synthesis, characterisation, and DC conductivity of polyaniline-lead oxide composites

  • Ameena Parveen EMAIL logo , Raghunandan Dashpande , Shakeel Ahmed und Aashis Roy
Veröffentlicht/Copyright: 27. Dezember 2012
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The polyaniline-PbO composites of various mass fractions were prepared by in situ polymerisation. The prepared samples were characterised by FTIR, and the dominant peaks confirmed the formation of polyaniline-PbO composites. The SEM study shows a granular agglomerated morphology, and increases with an increase in the lead oxide mass % in polyaniline. Direct current (DC) conductivity (σ DC) was studied as a function of temperature (T). From these studies, it was found that conductivity increased at higher temperatures due to the polarons hopping from one localised state to another. DSC studies reveal, the decrease in peak temperature from 273°C (pure PANI) to 169.2°C, 193.5°C, 218.4°C, 235.2°C, and 224.2°C, respectively for the various mass fractions (10 %, 30 %, 20 %, 40 %, and 50 %) of polyaniline-PbO composites.

[1] Abdiryim, T., Ubul, A., Jamal, R., Tian, Y., Awut, T., & Nurulla, I. (2012). Solid-state synthesis and characterization of polyaniline/nano-TiO2 composite. Journal of Applied Polymer Science, 126, 697–705. DOI: 10.1002/app.36857. http://dx.doi.org/10.1002/app.3685710.1002/app.36857Suche in Google Scholar

[2] Anilkumar, K. R., Parveen, A., Badiger, G. R., & Ambika Prasad, M. V. N. (2009). Effect of molybdenum trioxide (MoO3) on the electrical conductivity of polyaniline. Physica B: Condensed Matter, 404, 1664–1667. DOI: 10.1016/j.physb.2009.01.046. http://dx.doi.org/10.1016/j.physb.2009.01.04610.1016/j.physb.2009.01.046Suche in Google Scholar

[3] Bae, W. J., Kim, K. H., Jo, W. H., & Park, Y. H. (2004) Exfoliated nanocomposite from polyaniline graft copolymer/clay. Macromolecules, 37, 9850–9854. DOI: 10.1021/ma048829b. http://dx.doi.org/10.1021/ma048829b10.1021/ma048829bSuche in Google Scholar

[4] Chakraborty, G., Gupta, K., Meikap, A. K., Babu, R., & Blau, W. J. (2011). Anomalous electrical transport properties of polyvinyl alcohol-multiwall carbon nanotubes composites below room temperature. Journal of Applied Physics, 109, 033707. DOI: 10.1063/1.3544204. http://dx.doi.org/10.1063/1.354420410.1063/1.3544204Suche in Google Scholar

[5] Chu, C. W., Chen, F., Shulman, J., Tsui, S., Xue, Y. Y., Wen, W., & Sheng, P. (2005). A negative dielectric constant in nano-particle materials under an electric field at very low frequencies. In I. Bozovic, & D. Pavuna (Eds.), Strongly correlated electron materials: Physics and nanoengineering (Proceedings of SPIE, Vol. 5932, pp. 139–148). DOI: 10.1117/12.626267. 10.1117/12.626267Suche in Google Scholar

[6] Devi, P. I., & Ramachandran, K. (2011). Dielectric studies on hybridised PVDF-ZnO nanocomposites. Journal of Experimental Nanoscience, 6, 281–293. DOI: 10.1080/17458080.2010.497947. http://dx.doi.org/10.1080/17458080.2010.49794710.1080/17458080.2010.497947Suche in Google Scholar

[7] Javadi, H. H. S., Cromack, K. R., MacDiarmid, A. G., & Epstein, A. J. (1989). Microwave transport in the emeraldine form of polyaniline. Physical Review B, 39, 3579–3584. DOI: 10.1103/PhysRevB.39.3579. http://dx.doi.org/10.1103/PhysRevB.39.357910.1103/PhysRevB.39.3579Suche in Google Scholar

[8] Jia, W., Segal, E., Kornemandel, D., Lamhot, Y., Narkis, M., & Siegmann, A. (2002). Polyaniline-DBSA/organophilic clay nanocomposites: synthesis and characterization. Synthetic Metals, 128, 115–120. DOI: 10.1016/s0379-6779(01)00672-5. http://dx.doi.org/10.1016/S0379-6779(01)00672-510.1016/S0379-6779(01)00672-5Suche in Google Scholar

[9] Kerr, T. A., Wu, H., & Nazar, L. F. (1996). Concurrent polymerization and insertion of aniline in molybdenum trioxide: Formation and properties of a [poly(aniline)]0.24MoO3 nanocomposite. Chemistry of Materials, 8, 2005–2015. DOI: 10.1021/cm960071q. http://dx.doi.org/10.1021/cm960071q10.1021/cm960071qSuche in Google Scholar

[10] Kim, K. H., Kim, K. H., Huh, J., & Jo, W. H. (2007). Synthesis of thermally stable organosilicate for exfoliated poly(ethylene terephthalate) nanocomposite with superior tensile properties. Macromolecular Research, 15, 178–184. DOI: 10.1007/bf03218771. http://dx.doi.org/10.1007/BF0321877110.1007/BF03218771Suche in Google Scholar

[11] Li, X. G., Li, A., & Huang, M. R. (2008). Facile high-yield synthesis of polyaniline nanosticks with intrinsic stability and electrical conductivity. Chemistry — A European Journal, 14, 10309–10317. DOI: 10.1002/chem.200801025. http://dx.doi.org/10.1002/chem.20080102510.1002/chem.200801025Suche in Google Scholar

[12] Li, X. G., Feng, H., & Huang, M. R. (2010). Redox sorption and recovery of silver ions as silver nanocrystals on poly (anilineco-5-sulfo-2-anisidine) nanosorbents. Chemistry — A European Journal, 16, 10113–10123. DOI: 10.1002/chem.201000 506. http://dx.doi.org/10.1002/chem.201000506Suche in Google Scholar

[13] Li, X. G., Feng, H., Huang, M. R., Gu, G. L., & Moloney, M. G. (2012). Ultrasensitive Pb(II) potentiometric sensor based on copolyaniline nanoparticles in a plasticizer-free membrane with a long lifetime. Analytical Chemistry, 84, 134–140. DOI: 10.1021/ac2028886. http://dx.doi.org/10.1021/ac202888610.1021/ac2028886Suche in Google Scholar

[14] Parveen, A., Anil Kumar, K., Revanasidappa, M., Ekhilikar, S., & Ambika Prasad, M. V. N. (2008). Dielectric spectroscopy of PANI-CaTiO3 composites. Ferroelectrics, 377, 63–74. DOI: 10.1080/00150190802523594. http://dx.doi.org/10.1080/0015019080252359410.1080/00150190802523594Suche in Google Scholar

[15] Patil, R., Roy, A. S., Anilkumar, K. R., Ambika Prasad, M. V. N., & Ekhelikar, S. (2011). Electrical conductivity of polyaniline/NiZnO3 composites: A solid state electrolyte. Ferroelectric, 423, 77–85. DOI: 10.1080/00150193.2011.620836. http://dx.doi.org/10.1080/00150193.2011.62083610.1080/00150193.2011.620836Suche in Google Scholar

[16] Ramamurthy, P. C., Harrell, W. R., Gregory, R. V., Sadanadan, B., & Rao, A. M. (2004). Polyaniline/carbon nanotube composite Schottky contacts. Polymer Engineering & Science, 44, 28–33. DOI: 10.1002/pen.20002. http://dx.doi.org/10.1002/pen.2000210.1002/pen.20002Suche in Google Scholar

[17] Ramamurthy, P. C., Mallya, A. N., Joseph, A., Harrell, W. R., & Gregory, R. V. (2012). Synthesis and characterization of high molecular weight polyaniline for organic electronic applications. Polymer Engineering & Science, 52, 1821–1830. DOI: 10.1002/pen.23096. http://dx.doi.org/10.1002/pen.2309610.1002/pen.23096Suche in Google Scholar

[18] Roy, A. S., Anilkumar, K. R., & Ambika Prasad, M. V. N. (2011a). Core-shell method of synthesis, characterizations, and ac conductivity studies of polyaniline/n-TiO2 composites. Journal of Applied Polymer Science, 121, 676–680. DOI: 10.1002/app.33730. http://dx.doi.org/10.1002/app.3373010.1002/app.33730Suche in Google Scholar

[19] Roy, A. S., Anilkumar, K. R., & Ambika Prasad, M. V. N. (2011b). Impedance spectroscopic studies on nanometric polyaniline/CdO composites. Ferroelectrics, 413, 279–290. DOI: 10.1080/00150193.2011.531190. http://dx.doi.org/10.1080/00150193.2011.53119010.1080/00150193.2011.531190Suche in Google Scholar

[20] Roy, A. S., Anilkumar, K. R., Sasikala, M., Machappa, T., & Prasad, M. V. N. A. (2011c). Sensitivity enhancement for LPG detection by employing cadmium oxide doped in nanocrystalline polyaniline. Sensor Letters, 9, 1342–1348. DOI: 10.1166/sl.2011.1679. http://dx.doi.org/10.1166/sl.2011.167910.1166/sl.2011.1679Suche in Google Scholar

[21] Somani, P. R., Marimuthu, R., Mulik, U. P., Sainkar, S. R., & Amalnerkar, D. P. (1999). High piezoresistivity and its origin in conducting polyaniline/TiO2 composites. Synthetic Metals, 106, 45–52. DOI: 10.1016/s0379-6779(99)00081-8. http://dx.doi.org/10.1016/S0379-6779(99)00081-810.1016/S0379-6779(99)00081-8Suche in Google Scholar

[22] Su, S. J., & Kuramoto, N. (2000). Processable polyaniline-titanium dioxide nanocomposites: effect of titanium dioxide on the conductivity. Synthetic Metals, 114, 147–153. DOI: 10.1016/s0379-6779(00)00238-1. http://dx.doi.org/10.1016/S0379-6779(00)00238-110.1016/S0379-6779(00)00238-1Suche in Google Scholar

[23] Tunç, T., Uslu, H., & Altındal, S. (2011). Preparation and dielectric properties of polyvinyl alcohol (Co, Zn acetate) fiber/n-Si and polyvinyl alcohol (Ni, Zn acetate)/n-Si Schottky diodes. Fibers and Polymers, 12, 886–892. DOI: 10.1007/s12221-011-0886-6. http://dx.doi.org/10.1007/s12221-011-0886-610.1007/s12221-011-0886-6Suche in Google Scholar

[24] Wang, S., Tan, Z., Li, Y., Sun, L., & Zhang, T. (2006). Synthesis, characterization and thermal analysis of polyaniline/ZrO2 composites. Thermochimica Acta, 441, 191–194. DOI: 10.1016/j.tca.2005.05.020. http://dx.doi.org/10.1016/j.tca.2005.05.02010.1016/j.tca.2005.05.020Suche in Google Scholar

[25] Wu, C. G., Degroot, D. C., Marcy, H. O., Schindler, J. L., Kannewurf, C. R., Liu, Y. J., Hirpo, W., & Kanatzidis, M. G. (1996). Redox intercalative polymerization of aniline in V2O5 xerogel. The postintercalative intralamellar polymer growth in polyaniline/metal oxide nanocomposites is facilitated by molecular oxygen. Chemistry of Materials, 8, 1992–2204. DOI: 10.1021/cm9600236. 10.1021/cm9600236Suche in Google Scholar

[26] Zhang, F. M., Chang, J., & Eberhard, B. (2010). Dissolution of poly(vinyl alcohol)-modified carbon nanotubes in a buffer solution. New Carbon Materials, 25, 241–247. DOI: 10.1016/s1872-5805(09)60030-5. http://dx.doi.org/10.1016/S1872-5805(09)60030-510.1016/S1872-5805(09)60030-5Suche in Google Scholar

[27] Zuo, F., Angelopoules, M., MacDiarmid, A. G., & Epstein, A. J. (1989). AC conductivity of emeraldine polymer. Physical Review B, 39, 3570–3578. DOI: 10.1103/PhysRevB.39.3570. http://dx.doi.org/10.1103/PhysRevB.39.357010.1103/PhysRevB.39.3570Suche in Google Scholar

Published Online: 2012-12-27
Published in Print: 2013-3-1

© 2012 Institute of Chemistry, Slovak Academy of Sciences

Heruntergeladen am 27.11.2025 von https://www.degruyterbrill.com/document/doi/10.2478/s11696-012-0270-z/html?lang=de
Button zum nach oben scrollen