Home Facile synthesis of gemini surface-active ATRP initiator and its use in soap-free AGET ATRP mini-emulsion polymerisation
Article
Licensed
Unlicensed Requires Authentication

Facile synthesis of gemini surface-active ATRP initiator and its use in soap-free AGET ATRP mini-emulsion polymerisation

  • Chuan Cheng EMAIL logo , Quan Fu , Xiong Bai , Shao Liu , Liang Shen , Wu Fan and Hong Li
Published/Copyright: December 27, 2012
Become an author with De Gruyter Brill

Abstract

A novel cationic gemini surfactant has been readily synthesised in 70 % total yield. The functional gemini surfactant can act both as an emulsifier and an atom transfer radical polymerisation (ATRP) initiator in mini-emulsion polymerisation of methyl methacrylate (MMA), in which no other emulsifier was required. 1-(Dimethylamino)dodecane (N,N-dimethyldodecylamine, DMDA) was found to be a good ligand in the activator generated by electron transfer (AGET) ATRP reaction. Kinetic studies indicated that the polymerisation featured controlled/living radical polymerisation.

[1] Cheng, C., Shu, J., Gong, S., Shen, L., Qiao, Y., & Fu, C. (2010). Synthesis and use of a surface-active initiator in emulsion polymerisation under AGET and ARGET ATRP conditions. New Journal of Chemistry, 34, 163–170. DOI: 10.1039/b9nj00307j. http://dx.doi.org/10.1039/b9nj00307j10.1039/B9NJ00307JSearch in Google Scholar

[2] Cheng, C., Fu, Q., Liu, Z., Shen, L., Qiao, Y., & Fu, C. (2011). Emulsifier-free synthesis of crosslinkable ABA triblock copolymer nanoparticles via AGET ATRP. Macromolecular Research, 19, 1048–1055. DOI: 10.1007/s13233-011-1008-4. http://dx.doi.org/10.1007/s13233-011-1008-410.1007/s13233-011-1008-4Search in Google Scholar

[3] Faustino, C. M. C., Calado, A. R. T., & Garcia-Rio, L. (2009). Gemini surfactant-protein interactions: effect of pH, temperature, and surfactant stereochemistry. Biomacromolecules, 10, 2508–2514. DOI: 10.1021/bm9004723. http://dx.doi.org/10.1021/bm900472310.1021/bm9004723Search in Google Scholar PubMed

[4] Gao, H., & Matyjaszewski, K. (2009). Synthesis of functional polymers with controlled architecture by CRP of monomers in the presence of cross-linkers: From stars to gels. Progress in Polymer Science, 34, 317–350. DOI: 10.1016/j.progpolymsci.2009.01.001. http://dx.doi.org/10.1016/j.progpolymsci.2009.01.00110.1016/j.progpolymsci.2009.01.001Search in Google Scholar

[5] Hu, Z., Shen, X., Qiu, H., Lai, G., Wu, J., & Li, W. (2009). AGET ATRP of methyl methacrylate with poly(ethylene glycol) (PEG) as solvent and TMEDA as both ligand and reducing agent. European Polymer Journal, 45, 2313–2318. DOI: 10.1016/j.eurpolymj.2009.05.004. http://dx.doi.org/10.1016/j.eurpolymj.2009.05.00410.1016/j.eurpolymj.2009.05.004Search in Google Scholar

[6] Jahan, N., Paul, N., Petropolis, C. J., Marangoni, D. G., & Grindley, T. B. (2009). Synthesis of surfactants based on pentaerythritol. I. Cationic and zwitterionic gemini surfactants. The Journal of Organic Chemistry, 74, 7762–7773. DOI: 10.1021/jo9018107. http://dx.doi.org/10.1021/jo901810710.1021/jo9018107Search in Google Scholar PubMed

[7] Jakubowski, W., & Matyjaszewski, K. (2005). Activator generated by electron transfer for atom transfer radical polymerisation. Macromolecules, 38, 4139–4146. DOI: 10.1021/ma047389l. http://dx.doi.org/10.1021/ma047389l10.1021/ma047389lSearch in Google Scholar

[8] Jakubowski, W., & Matyjaszewski, K. (2006). Activators regenerated by electron transfer for atom-transfer radical polymerization of (meth)acrylates and related block copolymers. Angewandte Chemie International Edition, 45, 4482–4486. DOI: 10.1002/anie.200600272. http://dx.doi.org/10.1002/anie.20060027210.1002/anie.200600272Search in Google Scholar PubMed

[9] Jiang, Z. L., Liu, X. H., Wu, Z. Q., Jiang, C. W., & Deng, Y. C. (1998). Microwave solid state synthesis of the complex between Cu(II) and hexamethylenetetramine and its application. Journal of Guangxi Normal University, 16, 49–53. (in Chinese) Search in Google Scholar

[10] Li, W., Min, K., Matyjaszewski, K., Stoffelbach, F., & Charleux, B. (2008). PEO-based block copolymers and homopolymers as reactive surfactants for AGET ATRP of butyl acrylate in mini-emulsion. Macromolecules, 41, 6387–6392. DOI: 10.1021/ma800892e. http://dx.doi.org/10.1021/ma800892e10.1021/ma800892eSearch in Google Scholar

[11] Li, W., Matyjaszewski, K., Albrecht, K., & Möller, M. (2009). Reactive surfactants for polymeric nanocapsules via interfacially confined mini-emulsion ATRP. Macromolecules, 42, 8228–8233. DOI: 10.1021/ma901574y. http://dx.doi.org/10.1021/ma901574y10.1021/ma901574ySearch in Google Scholar

[12] Li, W., & Matyjaszewski, K. (2011). Cationic surface-active monomers as reactive surfactants for AGET emulsion ATRP of n-butyl methacrylate. Macromolecules, 44, 5578–5585. DOI: 10.1021/ma201058t. http://dx.doi.org/10.1021/ma201058t10.1021/ma201058tSearch in Google Scholar

[13] Liu, Q., Li, Y., Yao, L., & Yao, S. (2009). Use of gemini surfactants as semipermanent capillary coatings in aqueous-organic solvents for capillary electrophoretic separation of inorganic anions. Journal of Separation Science, 32, 4148–4154. DOI: 10.1002/jssc.200900403. http://dx.doi.org/10.1002/jssc.20090040310.1002/jssc.200900403Search in Google Scholar PubMed

[14] Lu, J., Yan, F., & Texter, J. (2009). Advanced applications of ionic liquids in polymer science. Progress in Polymer Science, 34, 431–448. DOI: 10.1016/j.progpolymsci.2008.12.001. http://dx.doi.org/10.1016/j.progpolymsci.2008.12.00110.1016/j.progpolymsci.2008.12.001Search in Google Scholar

[15] Ma, J., Cheng, C., & Wooley, K. L. (2009). Cycloalkenylfunctionalized polymers and block copolymers: Syntheses via selective RAFT polymerisations and demonstration of their versatile reactivity. Macromolecules, 42, 1565–1573. DOI: 10.1021/ma8024255. http://dx.doi.org/10.1021/ma802425510.1021/ma8024255Search in Google Scholar

[16] Mincheva, R., Paneva, D., Mespouille, L., Manolova, N., Rashkov, I., & Dubois, P. (2009). Optimized water-based ATRP of an anionic monomer: Comprehension and properties characterization. Journal of Polymer Science Part A: Polymer Chemistry, 47, 1108–1119. DOI: 10.1002/pola.23222. http://dx.doi.org/10.1002/pola.2322210.1002/pola.23222Search in Google Scholar

[17] Oh, J. K., Perineau, F., Charleux, B., & Matyjaszewski, K. (2009). AGET ATRP in water and inverse mini-emulsion: A facile route for preparation of high-molecular-weight biocompatible brush-like polymers. Journal of Polymer Science Part A: Polymer Chemistry, 47, 1771–1781. DOI: 10.1002/pola.23272. http://dx.doi.org/10.1002/pola.2327210.1002/pola.23272Search in Google Scholar

[18] Qiu, L. G., Xie, A. J., & Shen, Y. H. (2005). A novel triazole-based cationic gemini surfactant: synthesis and effect on corrosion inhibition of carbon steel in hydrochloric acid. Materials Chemistry and Physics, 91, 269–273. DOI: 10.1016/j.matchemphys.2004.11.022. http://dx.doi.org/10.1016/j.matchemphys.2004.11.02210.1016/j.matchemphys.2004.11.022Search in Google Scholar

[19] Rajendrakumar, K., & Dhamodharan, R. (2009). Ambient temperature atom transfer radical copolymerisation of tetrahydrofurfuryl methacrylate and methyl methacrylate: Reactivity ratio determination. European Polymer Journal, 45, 2685–2694. DOI: 10.1016/j.eurpolymj.2009.05.025. http://dx.doi.org/10.1016/j.eurpolymj.2009.05.02510.1016/j.eurpolymj.2009.05.025Search in Google Scholar

[20] Rhiannon, K. I., Wooley, K. L., Nyström, A. M., Burke, D. J., Kade, M. J., & Hawker, C. J. (2009). Applications of orthogonal “click” chemistries in the synthesis of functional soft materials. Chemical Reviews, 109, 5620–5686. DOI: 10.1021/cr900138t. http://dx.doi.org/10.1021/cr900138t10.1021/cr900138tSearch in Google Scholar PubMed PubMed Central

[21] Satoh, K., & Kamigaito, M. (2009). Stereospecific living radical polymerisation: Dual control of chain length and tacticity for precision polymer synthesis. Chemical Reviews, 109, 5120–5156. DOI: 10.1021/cr900115u. http://dx.doi.org/10.1021/cr900115u10.1021/cr900115uSearch in Google Scholar PubMed

[22] Schork, F. J., Luo, Y., Smulders, W., Russum, J. P., Butté, A., & Fontenot, K. (2005). Mini-emulsion polymerisation. Advances in Polymer Science, 175, 129–255. DOI 10.1007/b100115. 10.1007/b100115Search in Google Scholar

[23] Shen, L., Ma, C., Pu, S., Cheng, C., Xu, J., Li, L., & Fu, C. (2009). Synthesis and properties of novel photochromic poly(methyl methacrylate-co-diarylethene)s. New Journal of Chemistry, 33, 825–830. DOI: 10.1039/b813901f. http://dx.doi.org/10.1039/b813901f10.1039/b813901fSearch in Google Scholar

[24] Simms, R. W., & Cunningham, M. F. (2008). High molecular weight poly(butyl methacrylate) via ATRP miniemulsions. Macromolecular Symposia, 261, 32–35. DOI: 10.1002/masy.200850105. http://dx.doi.org/10.1002/masy.20085010510.1002/masy.200850105Search in Google Scholar

[25] Tan, H., & Xiao, H. (2008). Synthesis and antimicrobial characterization of novel l-lysine gemini surfactants pended with reactive groups. Tetrahedron Letters, 49, 1759–1761. DOI: 10.1016/j.tetlet.2008.01.079. http://dx.doi.org/10.1016/j.tetlet.2008.01.07910.1016/j.tetlet.2008.01.079Search in Google Scholar

[26] Tsarevsky, N. V., & Matyjaszewski, K. (2007). “Green” atom transfer radical polymerisation: From process design to preparation of well-defined environmentally friendly polymeric materials. Chemical Reviews, 107, 2270–2299. DOI: 10.1021/cr050947p. http://dx.doi.org/10.1021/cr050947p10.1021/cr050947pSearch in Google Scholar

[27] Wang, X. L., Zhang, X. H., Cao, M., Zheng, H. Z., Xiao, B., Wang, Y., & Li, M. (2009). Gemini surfactant-induced DNA condensation into a beadlike structure. The Journal of Physical Chemistry B, 113, 2328–2332. DOI: 10.1021/jp8078887. http://dx.doi.org/10.1021/jp807888710.1021/jp8078887Search in Google Scholar

[28] Xia, J., Johnson, T., Gaynor, S. G., Matyjaszewski, K., & DeSimone, J. (1999). Atom transfer radical polymerisation in supercritical carbon dioxide. Macromolecules, 32, 4802–4805. DOI: 10.1021/ma9900380. http://dx.doi.org/10.1021/ma990038010.1021/ma9900380Search in Google Scholar

[29] Zana, R. (2002). Dimeric and oligomeric surfactants. Behavior at interfaces and in aqueous solution: a review. Advances in Colloid and Interface Science, 97, 205–253. DOI: 10.1016/s0001-8686(01)00069-0. 10.1016/S0001-8686(01)00069-0Search in Google Scholar

[30] Zhao, X., Yu, Y., Xu, S., & Wang, B. (2009). Controlled/“living” radical polymerisation of methyl methacrylate catalyzed by CpCo(I) complexes conveniently generated from cobaltocene in situ. Polymer, 50, 2258–2263. DOI: 10.1016/j.polymer.2009.03.019. http://dx.doi.org/10.1016/j.polymer.2009.03.01910.1016/j.polymer.2009.03.019Search in Google Scholar

[31] Zhou, J. H., & Cui, Y. D. (2001). Measurement and calculation of HLB value of surfactants I. The measurement of HLB value. Speciality Petrochemicals, 2, 11–14. (in Chinese) Search in Google Scholar

Published Online: 2012-12-27
Published in Print: 2013-3-1

© 2012 Institute of Chemistry, Slovak Academy of Sciences

Downloaded on 25.9.2025 from https://www.degruyterbrill.com/document/doi/10.2478/s11696-012-0271-y/html
Scroll to top button