Home Effect of reactants’ concentration on the ratio and yield of E,Z isomers of isatin-3-(4-phenyl)semicarbazone and N-methylisatin-3-(4-phenyl)semicarbazone
Article
Licensed
Unlicensed Requires Authentication

Effect of reactants’ concentration on the ratio and yield of E,Z isomers of isatin-3-(4-phenyl)semicarbazone and N-methylisatin-3-(4-phenyl)semicarbazone

  • Klaudia Jakusová EMAIL logo , Martin Gáplovský , Jana Donovalová , Marek Cigáň , Henrieta Stankovičová , Robert Sokolík , Jan Gašpar and Anton Gáplovský
Published/Copyright: September 20, 2012
Become an author with De Gruyter Brill

Abstract

In this work, the effect of inter- and intramolecular interactions of reactants and products, reactants concentration as well as the solvent effect on the ratio of E and Z isomers of isatinphenylsemicarbazones in the reaction mixture is examined. Theoretical calculations proved that Z isomers are more stable than E isomers. Experimental results confirmed the noncovalent intermolecular donor-acceptor interactions of the reactants in the reaction mixture at concentrations above 0.1 mol L−1. The E/Z isomer ratio of isatin-3-(4-phenyl)semicarbazone (I) and N-methylisatin-3-(4-phenyl)semicarbazone (II) depends on the initial concentrations of 3-amino-1-phenylurea (phenylsemicarbazide; V) and 1H-indole-2,3-dione (isatin; III), or 3-methylindol-2,3(1H)-dion (3-methylisatin; IV), respectively. Both isomers exhibit high thermal stability. Thermal E-Z isomerization takes place at temperatures above 70°C in N,N-dimethylformamide.

[1] Afrasiabi, Z., Sinn, E., Lin, W., Ma, Y., Campana, C., & Padhye, S. (2005). Nickel (II) complexes of naphthaquinone thiosemicarbazone and semicarbazone: Synthesis, structure, spectroscopy, and biological activity. Journal of Inorganic Biochemystry, 99, 1526–1531. DOI: 10.1016/j.jinorgbio.2005.04.012. http://dx.doi.org/10.1016/j.jinorgbio.2005.04.01210.1016/j.jinorgbio.2005.04.012Search in Google Scholar

[2] Alarcón, S. H., Olivieri, A. C., Labadie, G. R., Cravero, R. M., & González-Sierra, M. (1995). Tautomerism of representative aromatic α-hydroxy carbaldehyde anils as studied by spectroscopic methods and AM1 calculations. Synthesis of 10-hydroxyphenanthrene-9-carbaldehyde. Tetrahedron, 51, 4619–4626. DOI: 10.1016/0040-4020(95)00002-p. http://dx.doi.org/10.1016/0040-4020(95)00002-P10.1016/0040-4020(95)00002-PSearch in Google Scholar

[3] Borsche, W., & Meyer, R. (1921). Über Desoxy-indigo. Berichte der Deutschen Chemischen Gesellschaft (A and B Series), 54, 2854–2856. DOI: 10.1002/cber.19210541037. http://dx.doi.org/10.1002/cber.1921054103710.1002/cber.19210541037Search in Google Scholar

[4] Brancato, G., Coutrot, F., Leigh, D. A., Murphy, A., Wong, J. K. Y., & Zerbetto, F. (2002). From reactants to products via simple hydrogen-bonding networks: Information transmission in chemical reactions. PNAS, 99, 4967–4971. DOI: 10.1073/pnas.072695799. http://dx.doi.org/10.1073/pnas.07269579910.1073/pnas.072695799Search in Google Scholar

[5] Cerchiaro, G., & da Costa Ferreira, A. M. (2006). Oxindoles and copper complexes with oxindole-derivatives as potential pharmacological agents. Journal of the Brazilian Chemical Society, 17, 1473–1485. DOI: 10.1590/s0103-50532006000800003. http://dx.doi.org/10.1590/S0103-5053200600080000310.1590/S0103-50532006000800003Search in Google Scholar

[6] Chai, H., Liu, G., Liu, L., Jia, D., Guo, Z., & Lang, J. (2005). Crystal structure and spectroscopic study on photochromism of 1,3-diphenyl-4-(4′-fluoro)benzal-5-pyrazolone N(4)-phenyl semicarbazone. Journal of Molecular Structure, 752, 124–129. DOI: 10.1016/j.molstruc.2005.04.047. http://dx.doi.org/10.1016/j.molstruc.2005.04.04710.1016/j.molstruc.2005.04.047Search in Google Scholar

[7] Cubero, E., Orozco, M., Hobza, P., & Luque, J. F. (1999). Hydrogen bond versus anti-hydrogen bond: A comparative analysis based on the electron density topology. Journal of Physical Chemistry A, 103, 6394–6401. DOI: 10.1021/jp990258f. http://dx.doi.org/10.1021/jp990258f10.1021/jp990258fSearch in Google Scholar

[8] Dimmock, J. R., Vashishtha, S. C., & Stables, J. P. (2000). Urelylene anticonvulants and related compounds. Pharmazie, 55, 490–494. Search in Google Scholar

[9] Epshtein, L. M. (1979). Hydrogen bonds and the reactivity of organic compounds in proton transfer and nucleophilic substitution reactions. Russian Chemical Reviews, 48, 854–867. DOI: 10.1070/rc1979v048n09abeh002417. http://dx.doi.org/10.1070/RC1979v048n09ABEH00241710.1070/RC1979v048n09ABEH002417Search in Google Scholar

[10] Falkovskaia, E., Pivovarenko, V. G., & del Valle, J. C. (2002). Observation of a single proton transfer fluorescence in a biaxially symmetric dihydroxy diflavonol. Chemical Physics Letters, 352, 415–420. DOI: 10.1016/s0009-2614(01)01490-7. http://dx.doi.org/10.1016/S0009-2614(01)01490-710.1016/S0009-2614(01)01490-7Search in Google Scholar

[11] Farghaly, M., Abbel-Wahab, B. F., & Ahmed, E. M. (2009). Synthesis, antiviral and antimicrobial screening of some new 2-oxoindoline derivatives. Chemistry of Heterocyclic Compounds, 45, 539–544. DOI: 10.1155/2008/362105. http://dx.doi.org/10.1007/s10593-009-0301-z10.1155/2008/362105Search in Google Scholar PubMed PubMed Central

[12] Hadjoudis, E., Dziembowska, T., & Rozwadowski, Z. (1999). Photoactivation of the thermochromic solid di-anil of 2-hydroxy-5-methyl-isophthalaldehyde in β-cyclodextrin. Journal of Photochemistry and Photobiology A: Chemistry, 128, 97–99. DOI: 10.1016/s1010-6030(99)00126-4. http://dx.doi.org/10.1016/S1010-6030(99)00126-410.1016/S1010-6030(99)00126-4Search in Google Scholar

[13] Jafri, L., Ansari, F. L., Jamil, M., Kalsoom, S., Qureishi, S., & Mirza, B. (2012). Microwave-assisted synthesis and bioevaluation of some semicarbazones. Chemical Biology and Drug Design, 79, 1–10. DOI: 10.1111/j.1747-0285.2012.01360.x. http://dx.doi.org/10.1111/j.1747-0285.2012.01360.x10.1111/j.1747-0285.2012.01360.xSearch in Google Scholar

[14] Jia, C., Wu, B., Liang, J., Huang, X., & Yang, X. J. (2010). A colorimetric and ratiometric fluorescent chemosensor for fluoride based on proton transfer. Journal of Fluorescence, 20, 291–297. DOI: 10.1007/s10895-009-0553-0. http://dx.doi.org/10.1007/s10895-009-0553-010.1007/s10895-009-0553-0Search in Google Scholar

[15] Kang, I. J., Wang, L. W., Hsu, T. A., Yueh, A., Lee, C. C., Lee, Y. C., Chao, Y. S., Shih, S. R., Chern, J. H., & Lee, C. Y. (2011). Isatin-β-thiosemicarbazones as potent herpes simplex virus inhibitors. Bioorganic & Medicinal Chemistry Letters, 21, 1948–1952. DOI: 10.1016/j.bmcl.2011.02.037. http://dx.doi.org/10.1016/j.bmcl.2011.02.03710.1016/j.bmcl.2011.02.037Search in Google Scholar

[16] Kolehmainen, E., Ośmiałowski, B., Nissinen, M., Kauppinen, R., & Gawinecki, R. (2000). Substituent and temperature controlled tautomerism of 2-phenacylpyridine: the hydrogen bond as a configurational lock of (Z)-2-(2-hydroxy-2-phenylvinyl)pyridine. Journal of Chemical Society, Perkin Transactions 2, 2000, 2185–2191. DOI: 10.1039/b006879i. http://dx.doi.org/10.1039/b006879i10.1039/b006879iSearch in Google Scholar

[17] Levy, D. H. (1980). Laser spectroscopy of cold gas-phase molecules. Annual Review of Physical Chemistry, 31, 197–225. DOI: 10.1146/annurev.pc.31.100180.001213. http://dx.doi.org/10.1146/annurev.pc.31.100180.00121310.1146/annurev.pc.31.100180.001213Search in Google Scholar

[18] Li, Q. S., & Fang, W. H. (2003). Theoretical studies on structures and reactivity of 8-hydroxyquinoline and its one-water complex in the ground and excited states. Chemical Physics Letters, 367, 637–644. DOI: 10.1016/s0009-2614(02)01791-8. http://dx.doi.org/10.1016/S0009-2614(02)01791-810.1016/S0009-2614(02)01791-8Search in Google Scholar

[19] Mehata, M. S., Joshi, H. C., & Tripathi, H. B. (2002). Excited-state intermolecular proton transfer reaction of 6-hydroxyquinoline in protic polar medium. Chemical Physics Letters, 359, 314–320. DOI: 10.1016/s0009-2614(02)00716-9. http://dx.doi.org/10.1016/S0009-2614(02)00716-910.1016/S0009-2614(02)00716-9Search in Google Scholar

[20] Otsubo, N., Okabe, C., Mori, H., Sakota, K., Amimoto, K., Kawato, T., & Sekiya, H. (2002). Excited-state intramolecular proton transfer in photochromic jet-cooled Nsalicylideneaniline. Journal of Photochemistry and Photobiology A: Chemistry, 154, 33–39. DOI: 10.1016/s1010-6030(02)00306-4. http://dx.doi.org/10.1016/S1010-6030(02)00306-410.1016/S1010-6030(02)00306-4Search in Google Scholar

[21] Pal, M., Sharma, N. K., Priynka, P., & Jha, K. K. (2011). Synthetic and biological multiplicity of isatin: A review. Journal of Advanced Scientific Research, 2, 35–44. Search in Google Scholar

[22] Pandeya, S. N., Yogeeswari, P., & Stables, J. P. (2000). Synthesis and anticonvulant activity of 4-bromophenyl substituted aryl semicarbazones. European Journal of Medicinal Chemistry, 35, 879–886. DOI: 10.1016/s0223-5234(00)01169-7. http://dx.doi.org/10.1016/S0223-5234(00)01169-710.1016/S0223-5234(00)01169-7Search in Google Scholar

[23] Pandeya, S. N., Raja, A. S., & Stables, J. P. (2002). Synthesis of isatin semicarbazones as novel anticonvulsants — role of hydrogen bonding. Journal of Pharmacy and Pharmaceutical Sciences, 5, 266–271. Search in Google Scholar

[24] Pandeya, S. N., Raja, A. S., & Nath, G. (2006). Synthesis and antimicrobial evaluation of some 4- or 6-chloroisatin derivatives. Indian Journal of Chemistry, 45B, 494–499. 10.1002/chin.200623110Search in Google Scholar

[25] Sathisha, M. P., Revankar, V. K., & Pai, K. S. R. (2008). Synthesis, structure, electrochemistry, and spectral characterization of bis-isatin thiocarbohydrazone metal complexes and their antitumor activity against ehrlich ascites carcinoma in swiss albino mice. Metal-Based Drugs, 1, 1–11. DOI: 10.1155/2008/362105. http://dx.doi.org/10.1155/2008/36210510.1155/2008/362105Search in Google Scholar

[26] Senthilkumar, L., Ghanty, T. K., & Ghosh, S. K. (2005). Electron density and energy decomposition analysis in hydrogenbonded complexes of azabenzenes with water, acetamide, and thioacetamide. Journal of Physical Chemistry A, 109, 7575–7582. DOI: 10.1021/jp052304j. http://dx.doi.org/10.1021/jp052304j10.1021/jp052304jSearch in Google Scholar

[27] Sonawane, A. E., Pawar, Y. A., Nagle, P. S., Mahulikar, P. P., & More, D. H. (2009). Synthesis of 1,4-benzothiazine compounds containing isatin hydrazone moiety as antimicrobial agent. Chinese Journal of Chemistry, 27, 2049–2054. DOI: 10.1002/cjoc.200990344. http://dx.doi.org/10.1002/cjoc.20099034410.1002/cjoc.200990344Search in Google Scholar

[28] Sridhar, S. K., Saravanan, M., & Ramesh, A. (2001). Synthesis and antibacterial screening of hydrazones, Schiff and Mannich bases of isatin derivatives. European Journal of Medicinal Chemistry, 36, 615–625. DOI: 10.1016/s0223-5234(01)01255-7. http://dx.doi.org/10.1016/S0223-5234(01)01255-710.1016/S0223-5234(01)01255-7Search in Google Scholar

[29] Verma, M., Pandeya, S. N., Singh, K. N., & Stables, J. P. (2004). Anticonvulsant activity of Schiff bases of isatin derivatives. Acta Pharmaceutica, 54, 49–56. Search in Google Scholar

[30] Verma, K., Pandeya, S. N., Singh, U. K., Gupta, S., Prashant, P., & Anurag Gautam, B. (2009). Synthesis and pharmacological activity of some substituted menthone semicarbazone and thiosemicarbazone derivatives. International Journal of Pharmaceutical Sciences and Nanotechnology, 1, 357–362. Search in Google Scholar

[31] Wu, D. L., Liu, L., Liu, G. F., & Jia, D. Z. (2007). Theoretical studies on geometrical properties and photochromic mechanism of two photochromic compounds. Journal of Molecular Structure: THEOCHEM, 806, 197–203. DOI: 10.1016/j.theochem.2006.11.027. http://dx.doi.org/10.1016/j.theochem.2006.11.02710.1016/j.theochem.2006.11.027Search in Google Scholar

[32] Zhao, Y., & Truhlar, D. G. (2008). The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theoretical Chemistry Accounts: Theory, Computation, and Modeling (Theoretica Chimica Acta), 120, 215–241. DOI: 10.1007/s00214-007-0310-x. 10.1007/s00214-007-0310-xSearch in Google Scholar

Published Online: 2012-9-20
Published in Print: 2013-1-1

© 2012 Institute of Chemistry, Slovak Academy of Sciences

Articles in the same Issue

  1. Professor Dr. Štefan Toma—excellent scientist and teacher—celebrates his 75th birthday
  2. Palladium-catalysed Claisen rearrangement of 6-allyloxypurines
  3. Applicability of photochemically generated pendant benzoyl peroxides in both “grafting from” and “grafting to” techniques
  4. Spectral characterisation of new organic fluorescent dyes with an alkoxysilane moiety and their utilisation for the labelling of layered silicates
  5. Substituted homoallenyl aldehydes and their derivatives. Part 1: Homoallenyl aldehydes and protected hydrazones
  6. Substituted homoallenyl aldehydes and their derivatives. Part 2: Azines
  7. Methyltrioxorhenium-catalysed oxidation of secondary amines to nitrones in ionic liquids
  8. Thiophenium-ylides: Synthesis and reactivity
  9. Aminohydroxylation of divinylcarbinol and its application to the synthesis of bicyclic hydroxypyrrolidine and aminotetrahydrofuran building blocks
  10. Novel quercetin derivatives: synthesis and screening for anti-oxidant activity and aldose reductase inhibition
  11. Total synthesis of N,O,O,O-tetraacetyl-d-ribo-phytosphingosine and its 2-epi-congener
  12. A concise synthesis of enantiomerically pure aroyl-l-alanines and dihydroaroyl-l-alanines
  13. Synthesis and properties of macrocyclic diazene switch with binaphthalene unit attached via acrylamide linkers
  14. Conjugated push-pull salts derived from linear benzobisthiazole: preparation and optical properties
  15. Effect of reactants’ concentration on the ratio and yield of E,Z isomers of isatin-3-(4-phenyl)semicarbazone and N-methylisatin-3-(4-phenyl)semicarbazone
Downloaded on 27.11.2025 from https://www.degruyterbrill.com/document/doi/10.2478/s11696-012-0248-x/html?lang=en
Scroll to top button