Startseite Sludge of wastewater treatment plants as Co2+ ions sorbent
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Sludge of wastewater treatment plants as Co2+ ions sorbent

  • Vladimír Frišták EMAIL logo , Martin Pipiška , Miroslav Horník , Jozef Augustín und Juraj Lesný
Veröffentlicht/Copyright: 27. Dezember 2012
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Sludges produced in huge amounts by wastewater treatment plants (WWTP) display high fertility properties; however, the presence of heavy metals restricts their use for agricultural purposes. Sorption capacity of sludge is generally much higher and it can also be considered as a cheap sorbent of heavy metals. The paper describes cobalt sorption by dried activated sludge (DAS) obtained from the aerobic phase of a WWTP. DAS was characterized by FT-IR spectroscopy, cation exchange capacity (CEC), and atomic absorption spectrometry (AAS) analysis. Sorption capacity of DAS (Q eq) increased with the initial concentration (C 0) of Co2+ (CoCl2) within the range from 100 μmol g−1 to 4000 μmol g−1, reaching 15 μmol g−1 and 200 μmol g−1, respectively. The maximum uptake capacity (Q max) at pH 6.0 calculated from the Langmuir isotherm model was (256 ± 9) μmol g−1 for Co2+ ions. Obtained Q values were dependent on pH within the range from 3.0 to 7.0. Competitive effect of other bivalent cations such as Ni2+ in Co2+ sorption equilibrium was confirmed; which is in agreement with the hypothesis of the decisive role of ion-exchange mechanism in metal sorption. The obtained data are discussed from the point of view of potential utilization of sludges as sorbents, i.e. in non-agricultural application.

[1] Aksu, Z., Açikel, U., Kabasakal, E., & Tezer, S. (2002). Equilibrium modelling of individual and simultaneous biosorption of chromium(VI) and nickel(II) onto dried activated sludge. Water Research, 36, 3063–3073. DOI: 10.1016/s0043-1354(01)00530-9. http://dx.doi.org/10.1016/S0043-1354(01)00530-910.1016/S0043-1354(01)00530-9Suche in Google Scholar

[2] Chen, J. P., Lie, D., Wang, L., Wu, S., & Zhang, B. (2002). Dried waste activated sludge as biosorbents for metal removal: adsorptive characterization and prevention of organic leaching. Journal of Chemical Technology and Biotechnology, 77, 657–662. DOI: 10.1002/jctb.627. http://dx.doi.org/10.1002/jctb.62710.1002/jctb.627Suche in Google Scholar

[3] Chovancová, D., Lesný, J., & Chmielewska, E. (2005). Study of sorption of selenite and selenate by selected sorbents. Nova Biotechnologica, 5, 27–37. Suche in Google Scholar

[4] Dionisi, D., Levantesi, C., Majone, M., Bornoroni, L., & De Sanctis, M. (2007). Effect of micropollutants (organic xenobiotics and heavy metals) on the activated sludge process. Industrial and Engineering Chemistry Research, 46, 6762–6769. DOI: 10.1021/ie061688c. http://dx.doi.org/10.1021/ie061688c10.1021/ie061688cSuche in Google Scholar

[5] Dreywood, R. (1946). Qualitative test for carbohydrate material. Industrial and Engineering Chemistry Analytical Edition, 18, 499–504. DOI: 10.1021/i560156a015. http://dx.doi.org/10.1021/i560156a01510.1021/i560156a015Suche in Google Scholar

[6] Ellmann, G. L. (1959). Tissue sulfhydryl groups. Archives of Biochemistry and Biophysics, 82, 70–77. DOI: 10.1016/0003-9861(59)90090-6. http://dx.doi.org/10.1016/0003-9861(59)90090-610.1016/0003-9861(59)90090-6Suche in Google Scholar

[7] Guibaud, G., Comte, S., Bordas, F., Dupuy, S., & Baudu, M. (2005). Comparison of the complexation potential of extracellular polymeric substances (EPS), extracted from activated sludges and produced by pure bacteria strain, for cadmium, lead and nickel. Chemosphere, 59, 629–638. DOI: 10.1016/j.chemosphere.2004.10.028. http://dx.doi.org/10.1016/j.chemosphere.2004.10.02810.1016/j.chemosphere.2004.10.028Suche in Google Scholar PubMed

[8] Guibaud, G., van Hullebusch, E., Bordas, F., d’Abzac, P., & Joussein, E. (2009). Sorption of Cd(II) and Pb(II) by exopolymeric substances (EPS) extracted from activated sludges and pure bacterial strains: Modelling of the metal/ligand ratio effect and role of the mineral fraction. Bioresource Technology, 100, 2959–2968. DOI: 10.1016/j.biortech.2009.01.040. http://dx.doi.org/10.1016/j.biortech.2009.01.04010.1016/j.biortech.2009.01.040Suche in Google Scholar PubMed

[9] Gustafson, J. P. (2010). Visual-MINTEQ, version 3.0 [computer software]. Stockholm, Sweden: Kungliga Tekniska Högskolan. Suche in Google Scholar

[10] Hammaini, A., González, F., Ballester, A., Blázquez, M. L., & Muñoz, J. A. (2007). Biosorption of heavy metals by activated sludge and their desorption characteristics. Journal of Environmental Management, 84, 419–426. DOI: 10.1016/j.jenvman.2006.06.015. http://dx.doi.org/10.1016/j.jenvman.2006.06.01510.1016/j.jenvman.2006.06.015Suche in Google Scholar PubMed

[11] Krishnan, K. A., & Anirudhan, T. S. (2008). Kinetic and equilibrium modelling of cobalt(II) adsorption onto bagasse pith based sulphurised activated carbon. Chemical Engineering Journal, 137, 257–264. DOI: 10.1016/j.cej.2007.04.029. http://dx.doi.org/10.1016/j.cej.2007.04.02910.1016/j.cej.2007.04.029Suche in Google Scholar

[12] Kumar, M., Adham, S. S., & Pearce, W. R. (2006). Investigation of seawater reverse osmosis fouling and its relationship to pretreatment type. Environmental Science & Technology, 40, 2037–2044. DOI: 10.1021/es0512428. http://dx.doi.org/10.1021/es051242810.1021/es0512428Suche in Google Scholar PubMed

[13] Kuyucak, N., & Volesky, B. (1989). Accumulation of cobalt by marine alga. Biotechnology and Bioengineering, 33, 809–814. DOI: 10.1002/bit.260330703. http://dx.doi.org/10.1002/bit.26033070310.1002/bit.260330703Suche in Google Scholar

[14] Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951). Protein measurement with the folin phenol reagent. Journal of Biological Chemistry, 193, 265–275. 10.1016/S0021-9258(19)52451-6Suche in Google Scholar

[15] Marešová, J., Horník, M., Pipíška, M., & Augustín, J. (2010). Sorption of Co2+, Zn2+, Cd2+ and Cs+ ions by activated sludge of sewage treatment plant. Nova Biotechnologica, 10, 53–61. Suche in Google Scholar

[16] Marešová, J., Pipíška, M., Rozložník, M., Horník, M., Remenárová, L., & Augustin, J. (2011). Cobalt and strontium sorption by moss biosorbent: Modeling of single and binary metal systems. Desalination, 266, 134–141. DOI: 10.1016/j.desal.2010.08.014. http://dx.doi.org/10.1016/j.desal.2010.08.01410.1016/j.desal.2010.08.014Suche in Google Scholar

[17] Nadeem, R., Hanif, M. A., Shaheen, F., Perveen, S., Zafar, M. N., & Iqbal, T. (2008). Physical and chemical modification of distillery sludge for Pb(II) biosorption. Journal of Hazardous Materials, 150, 335–342. DOI: 10.1016/j.jhazmat.2007.04.110. http://dx.doi.org/10.1016/j.jhazmat.2007.04.11010.1016/j.jhazmat.2007.04.110Suche in Google Scholar

[18] Nagpal, N. K. (2004). Water quality guidelines for cobalt. Victoria, BC, Canada: Ministry of Water, Land and Air Protection. (TD226.B7N33 2004) Suche in Google Scholar

[19] National Council of the Slovak Republic (2000). Zákon o hnojivách č. 136/2000 Z.z. Bratislava Slovakia: IURA edition. Suche in Google Scholar

[20] National Council of the Slovak Republic (2001). Zákon o odpadoch č. 223/2001 Z.z. Bratislava Slovakia: IURA edition. Suche in Google Scholar

[21] National Council of the Slovak Republic (2003). Zákon 5.188/2003 o aplikácii čistiarenskeho kalu a dnových sedimentov do pôdy a o doplnení zákona o odpadoch č. 223/2001 Z.z. o odpadoch a o zmene a doplnení niektorých zákonov v znení neskoršich predpisov. Bratislava Slovakia: IURA edition. Suche in Google Scholar

[22] Ministry of Environment of the Slovak Republic (2010). National report on water resources. Management in SR 2009. Bratislava, Slovakia: Water Research Institute. Suche in Google Scholar

[23] Nieboer, E., & Richardson, D. H. S. (1980). The replacement of the nondescript term “heavy metals” by a biologically and chemically significant classification of metal ions. Environmental Pollution Series B, Chemical and Physical, 1, 3–26. DOI: 10.1016/0143-148x(80)90017-8. http://dx.doi.org/10.1016/0143-148X(80)90017-810.1016/0143-148X(80)90017-8Suche in Google Scholar

[24] Pal, A., Ghosh, S., & Paul, A. K. (2006). Biosorption of cobalt by fungi from serpentine soil of Andaman. Bioresource Technology, 97, 1253–1258. DOI: 10.1016/j.biortech.2005.01.043. http://dx.doi.org/10.1016/j.biortech.2005.01.04310.1016/j.biortech.2005.01.043Suche in Google Scholar PubMed

[25] Pipíška, M., Horník, M., Vrtoch, Ľ., Augustín, J., & Lesný, J. (2007). Biosorption of Co2+ ions by lichen Hypogymnia physodes from aqueous solutions. Biologia, 62, 276–282. DOI: 10.2478/s11756-007-0047-y. http://dx.doi.org/10.2478/s11756-007-0047-y10.2478/s11756-007-0047-ySuche in Google Scholar

[26] Remenárová, L., Pipíška, M., Horník, M., Rozložník, M., Augustín, J., & Lesný, J. (2012). Biosorption of cadmium and zinc by activated sludge from single and binary solutions: Mechanism, equilibrium and experimental design study. Journal of the Taiwan Institute of Chemical Engineers, 43, 433–443. DOI: 10.1016/j.jtice.2011.12.004. http://dx.doi.org/10.1016/j.jtice.2011.12.00410.1016/j.jtice.2011.12.004Suche in Google Scholar

[27] Slovak Institute of Metrology (2003). Slovak technical standard: Kvalita pôdy. Stanovenie výmennej kapacity katiónov a hodnoty nasýtenia zásadami pomocou roztoku chloridu bárnatého. ISO 11260. Bratislava, Slovakia. Suche in Google Scholar

[28] Sun, X. F., Wang, S. G., Liu, X. W., Gong, W. X., Bao, N., & Gao, B. Y. (2008). Competitive biosorption of zinc(II) and cobalt(II) in single- and binary-metal systems by aerobic granules. Journal of Colloid Interface Science, 324, 1–8. DOI: 10.1016/j.jcis.2008.04.049. http://dx.doi.org/10.1016/j.jcis.2008.04.04910.1016/j.jcis.2008.04.049Suche in Google Scholar PubMed

[29] Turner, B. F., & Fein, J. B. (2006). Protofit: A program for determining surface protonation constants from titration data. Computers & Geosciences, 32, 1344–1356. DOI: 10.1016/j.cageo.2005.12.005. http://dx.doi.org/10.1016/j.cageo.2005.12.00510.1016/j.cageo.2005.12.005Suche in Google Scholar

[30] Verbeken, K., Vanheule, B., Pinoy, L., & Verhaege, M. (2009). Cobalt removal from waste-water by means of supported liquid membranes. Journal of Chemical Technology and Biotechnology, 84, 711–715. DOI: 10.1002/jctb.2103. http://dx.doi.org/10.1002/jctb.210310.1002/jctb.2103Suche in Google Scholar

[31] Vijayaraghavan, K., Jegan, J., Palanivenu, K., & Velan, M. (2005). Biosorption of cobalt(II) and nickel(II) by seaweeds: batch and column studies. Separation and Purification Technology, 44, 53–59. DOI: 10.1016/j.seppur.2004.12.003. http://dx.doi.org/10.1016/j.seppur.2004.12.00310.1016/j.seppur.2004.12.003Suche in Google Scholar

[32] Volesky, B. (2001). Detoxification of metal-bearing effluents: biosorption for the next century. Hydrometallurgy, 59, 203–216. DOI: 10.1016/s0304-386x(00)00160-2. http://dx.doi.org/10.1016/S0304-386X(00)00160-210.1016/S0304-386X(00)00160-2Suche in Google Scholar

[33] Zhang, Y., & Banks, C. (2006). A comparison of the properties of polyurethane immobilized Sphagnum moss, seaweed, sunflower waste and maize for the biosorption of Cu, Pb, Zn and Ni in continuous flow packed columns. Water Research, 40, 788–798. DOI: 10.1016/j.watres.2005.12.011. http://dx.doi.org/10.1016/j.watres.2005.12.01110.1016/j.watres.2005.12.011Suche in Google Scholar PubMed

Published Online: 2012-12-27
Published in Print: 2013-3-1

© 2012 Institute of Chemistry, Slovak Academy of Sciences

Heruntergeladen am 27.11.2025 von https://www.degruyterbrill.com/document/doi/10.2478/s11696-012-0244-1/html?lang=de
Button zum nach oben scrollen