Home Novel quercetin derivatives: synthesis and screening for anti-oxidant activity and aldose reductase inhibition
Article
Licensed
Unlicensed Requires Authentication

Novel quercetin derivatives: synthesis and screening for anti-oxidant activity and aldose reductase inhibition

  • Miroslav Veverka EMAIL logo , Ján Gallovič , Emil Švajdlenka , Eva Veverková , Naďa Prónayová , Ivana Miláčková and Milan Štefek
Published/Copyright: September 20, 2012
Become an author with De Gruyter Brill

Abstract

The direct acylation of quercetin (I) with 3-chloro-2,2-dimethylpropanoyl chloride (II) gives a complex reaction mixture. The synthesis of different acylated quercetin with from mono- to tetra-O-substituted functions was achieved in a simple procedure wherein the yield of isomers depended on the stoichiometric ratio of reagents. The crude reaction mixtures were analysed (LC-MS) and compared with the isolated products. Unambiguous structural characterisation of isomeric quercetin derivatives was confirmed by NMR analysis. In addition, the quercetin dimer can be obtained in a high yield in the simple procedure. The anti-oxidant activity and aldose reductase inhibition of the compounds were screened with the aim of providing bi-functional remedies to treat diabetic complications and other diseases where oxidative stress and the polyol pathway are key etiological factors.

[1] Blois, M. S. (1958). Antioxidant determinations by the use of a stable free radical. Nature, 181, 1199–2000. DOI: 10.1038/1811199a0. http://dx.doi.org/10.1038/1811199a010.1038/1811199a0Search in Google Scholar

[2] Bouktaib, M., Lebrun, S., Atmani, A., & Rolando, C. (2002). Hemisynthesis of all the O-monomethylated analogues of quercetin including the major metabolites, through selective protection of phenolic functions. Tetrahedron, 58, 10001–10009. DOI: 10.1016/s0040-4020(02)01306-6. http://dx.doi.org/10.1016/S0040-4020(02)01306-610.1016/S0040-4020(02)01306-6Search in Google Scholar

[3] Chervyakovsky, E. M., Bolibrukh, D. A., Kurovskii, D. L., Gilep, A. A., Vlasova, T. M., Kurchenko, V. P., & Usanov, S. A. (2008). Oligomeric oxidation products of the flavonoid quercetin. Chemistry of Natural Compounds, 44, 427–431. DOI: 10.1007/s10600-008-9092-1. http://dx.doi.org/10.1007/s10600-008-9092-110.1007/s10600-008-9092-1Search in Google Scholar

[4] Costantino, L., Rastelli, G., Gamberini, M. C., Vinson, J. A., Bose, P., Iannone, A., Staffieri, M., Antolini, L., Del Corso, A., Mura, U., & Albasini, A. (1999). 1-Benzopyran-4-one antioxidants as aldose reductase inhibitors. Journal of Medicinal Chemistry, 42, 1881–1893. DOI: 10.1021/jm980441h. http://dx.doi.org/10.1021/jm980441h10.1021/jm980441hSearch in Google Scholar

[5] Coudert, P., Albuisson, E, Boire, J. Y., Duroux, E., Bastide, P., & Couquelet, J. (1994). Synthesis of pyridazine acetic acid derivatives possessing aldose reductase inhibitory activity and antioxidant properties. European Journal of Medicinal Chemistry, 29, 471–477. DOI: 10.1016/0223-5234(94)90074-4. http://dx.doi.org/10.1016/0223-5234(94)90074-410.1016/0223-5234(94)90074-4Search in Google Scholar

[6] Da Settimo, F., Primofiore, G., La Motta, C., Salerno, S., Novellino, E., Greco, G., Lavecchia, A., Laneri, S., & Boldrini, E. (2005). Spirohydantoin derivatives of thiopyrano[2,3-b]pyridin-4(4H)-one as potent in vitro and in vivo aldose reductase inhibitors. Bioorganic & Medicinal Chemistry, 13, 491–499. DOI: 10.1016/j.bmc.2004.10.019. http://dx.doi.org/10.1016/j.bmc.2004.10.01910.1016/j.bmc.2004.10.019Search in Google Scholar

[7] Furusawa, M., Tsuchiya, H., Nagayama, M., Tanaka, T., Oyama, M., Ito, T., Iinuma, M., & Takeuchi, H. (2006). Cell growth inhibition by membrane-active components in brownish scale of onion. Journal of Health Science, 52, 578–584. DOI: 10.1248/jhs.52.578. http://dx.doi.org/10.1248/jhs.52.57810.1248/jhs.52.578Search in Google Scholar

[8] Golding, B. T., Griffin, R. J., Quarterman, C. P., Slack, J. A., & Williams, J. G. (2001). U.S. Patent No. 6258840 B1. Washington, DC, USA: U.S. Patent and Trademark Office. Search in Google Scholar

[9] Gülşen, A., Makris, D. P., & Kefalas, P. (2007). Biomimetic oxidation of quercetin: Isolation of a naturally occuring quercetin heterodimer and evaluation of its in vitro antioxidant properties. Food Research International, 40, 7–14. DOI: 10.1016/j.foodres.2006.07.009. http://dx.doi.org/10.1016/j.foodres.2006.07.00910.1016/j.foodres.2006.07.009Search in Google Scholar

[10] Harborne, J. B. (Ed.) (1994). The flavonoids, advances in research since 1986 (pp. 378–382). London, UK: Chapman & Hall/CRC. 10.1007/978-1-4899-2911-2Search in Google Scholar

[11] Harborne, J. B., & Williams, C. A. (2000). Advances in flavonoid research since 1992. Phytochemistry, 55, 481–504. DOI: 10.1016/s0031-9422(00)00235-1. http://dx.doi.org/10.1016/S0031-9422(00)00235-110.1016/S0031-9422(00)00235-1Search in Google Scholar

[12] Hayman, S., & Kinoshita, J. H. (1965). Isolation and properties of lens aldose reductase. The Journal of Biological Chemistry, 240, 877–882. 10.1016/S0021-9258(17)45256-2Search in Google Scholar

[13] Jurd, L. (1962). The selective alkylation of polyphenols. II. Methylation of 7-, 4′-, and ′-hydroxyl groups in flavonols. The Journal of Organic Chemistry, 27, 1294–1297. DOI: 10.1021/jo01051a041. http://dx.doi.org/10.1021/jo01051a04110.1021/jo01051a041Search in Google Scholar

[14] Jurd, L. (1972). U.S. Patent No. 3661890. Washington, DC, USA: U.S. Patent and Trademark Office. Search in Google Scholar

[15] Kim, B. H., Yoo, J., Park, S. H., Jung, J. K., Cho, H., & Chung, Y. (2006). Synthesis and evaluation of antitumor activity of novel 1,4-naphthoquinon derivatives (IV). Archives of Pharmacal Research, 29, 123–130. DOI: 10.1007/bf02974272. http://dx.doi.org/10.1007/BF0297427210.1007/BF02974272Search in Google Scholar PubMed

[16] Krishnamachari, V., Levine, L. H., & Paré, P. W. (2002). Flavonoid oxidation by the radical generator AIBN: A unified mechanism for quercetin radical scavenging. Journal of Agricultural and Food Chemistry, 50, 4357–4363. DOI: 10.1021/jf020045e. http://dx.doi.org/10.1021/jf020045e10.1021/jf020045eSearch in Google Scholar PubMed

[17] La Motta, C., Sartini, S., Mugnaini, L., Simorini, F., Taliani, S., Salerno, S., Marini, A. M., Da Settimo, F., Lavecchia, A., Novellino, E., Cantore, M., Failli, P., & Ciuffi, M. (2007). Pyrido[1,2-a]pyrimidin-4-one derivatives as a novel class of selective aldose reductase inhibitors exhibiting antioxidant activity. Journal of Medicinal Chemistry, 50, 4917–4927. DOI: 10.1021/jm070398a. http://dx.doi.org/10.1021/jm070398a10.1021/jm070398aSearch in Google Scholar PubMed

[18] Li, N. G., Shi, Z. H., Tang, Y. P., Yang, J. P., & Duan, J. A. (2009). An efficient partial synthesis of 4′-O-methylquercetin via regioselective protection and alkylation of quercetin. Beilstein Journal of Organic Chemistry, 5, No. 60. DOI: 10.3762/bjoc.5.60. 10.3762/bjoc.5.60Search in Google Scholar PubMed PubMed Central

[19] Lin, Y. M. (2001). WO Patent No. 200121164. Geneva, Switzerland: World Intellectual Property Organization. Search in Google Scholar

[20] Materska, M. (2008). Quercetin and its derivatives: chemical structure and bioactivity — a rewiev. Polish Journal of Food and Nutrition Sciences, 58, 407–413. Search in Google Scholar

[21] Mattarei, A., Biasutto, L., Rastrelli, F., Garbisa, S., Marotta, E., Zoratti, M., & Paradisi, C. (2010). Regioselective Oderivatization of quercetin via ester intermediates. An improved synthesis of rhamnetin and development of a new mitochondriotropic derivative. Molecules, 15, 4722–4736. DOI: 10.3390/molecules15074722. http://dx.doi.org/10.3390/molecules1507472210.3390/molecules15074722Search in Google Scholar PubMed PubMed Central

[22] Moon, B. H., Lee, Y., Shin, C., & Lim, Y. (2005). Complete assignments of the 1H and 13C NMR data of flavone derivatives. Bulletin of the Korean Chemical Society, 26, 603–608. DOI: 10.5012/bkcs.2005.26.4.603. http://dx.doi.org/10.5012/bkcs.2005.26.4.60310.5012/bkcs.2005.26.4.603Search in Google Scholar

[23] Perrier, E., Mariotte, A. M., Boumendjel, A., & Bresson-Rival, D. (2001). U.S. Patent No. 6235294. Washington, DC, USA: U.S. Patent and Trademark Office. Search in Google Scholar

[24] Stefek, M., Snirc, V., Djoubissie, P. O., Majekova, M., Demopoulos, V., Rackova, L., Bezakova, Z., Karasu, C., Carbone, V., & El-Kabbani, O. (2008). Carboxymethylated pyridoindole antioxidants as aldose reductase inhibitors: Synthesis, activity, partitioning, and molecular modeling. Bioorganic & Medicinal Chemistry, 16, 4908–4920. DOI: 10.1016/j.bmc.2008.03.039. http://dx.doi.org/10.1016/j.bmc.2008.03.03910.1016/j.bmc.2008.03.039Search in Google Scholar PubMed

[25] Tandon, V. K., Maurya, H. K., Mishra, N. N., & Shukla, P. K. (2009). Design, synthesis and biological evaluation of novel nitrogen and sulfur containing hetero-1,4-naphthoquinones as potent antifungal and antibacterial agents. European Journal of Medicinal Chemistry, 44, 3130–3137. DOI: 10.1016/j.ejmech.2009.03.006. http://dx.doi.org/10.1016/j.ejmech.2009.03.00610.1016/j.ejmech.2009.03.006Search in Google Scholar PubMed

[26] Zenkevich, I. G., Eshchenko, A. Y., Makarova, S. V., Vitenberg, A. G., Dobryakov, Y. G., & Utsal, V. A. (2007). Identification of the products of oxidation of quercetin by air oxygen at ambient temperature. Molecules, 12, 654–672. DOI: 10.3390/12030654. http://dx.doi.org/10.3390/1203065410.3390/12030654Search in Google Scholar PubMed PubMed Central

Published Online: 2012-9-20
Published in Print: 2013-1-1

© 2012 Institute of Chemistry, Slovak Academy of Sciences

Articles in the same Issue

  1. Professor Dr. Štefan Toma—excellent scientist and teacher—celebrates his 75th birthday
  2. Palladium-catalysed Claisen rearrangement of 6-allyloxypurines
  3. Applicability of photochemically generated pendant benzoyl peroxides in both “grafting from” and “grafting to” techniques
  4. Spectral characterisation of new organic fluorescent dyes with an alkoxysilane moiety and their utilisation for the labelling of layered silicates
  5. Substituted homoallenyl aldehydes and their derivatives. Part 1: Homoallenyl aldehydes and protected hydrazones
  6. Substituted homoallenyl aldehydes and their derivatives. Part 2: Azines
  7. Methyltrioxorhenium-catalysed oxidation of secondary amines to nitrones in ionic liquids
  8. Thiophenium-ylides: Synthesis and reactivity
  9. Aminohydroxylation of divinylcarbinol and its application to the synthesis of bicyclic hydroxypyrrolidine and aminotetrahydrofuran building blocks
  10. Novel quercetin derivatives: synthesis and screening for anti-oxidant activity and aldose reductase inhibition
  11. Total synthesis of N,O,O,O-tetraacetyl-d-ribo-phytosphingosine and its 2-epi-congener
  12. A concise synthesis of enantiomerically pure aroyl-l-alanines and dihydroaroyl-l-alanines
  13. Synthesis and properties of macrocyclic diazene switch with binaphthalene unit attached via acrylamide linkers
  14. Conjugated push-pull salts derived from linear benzobisthiazole: preparation and optical properties
  15. Effect of reactants’ concentration on the ratio and yield of E,Z isomers of isatin-3-(4-phenyl)semicarbazone and N-methylisatin-3-(4-phenyl)semicarbazone
Downloaded on 27.11.2025 from https://www.degruyterbrill.com/document/doi/10.2478/s11696-012-0240-5/pdf
Scroll to top button