Startseite Surfactant-assisted synthesis of polyaniline nanofibres without shaking and stirring: effect of conditions on morphology and conductivity
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Surfactant-assisted synthesis of polyaniline nanofibres without shaking and stirring: effect of conditions on morphology and conductivity

  • Ali Olad EMAIL logo , Fahimeh Ilghami und Rahimeh Nosrati
Veröffentlicht/Copyright: 19. Juni 2012
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Polyaniline (PANI) nanofibres were synthesised by the chemical oxidative polymerisation method using ammonium peroxydisulphate (APS) as an oxidant/initiator. In this work, a surfactant-assisted method without shaking and stirring was used for the synthesis of PANI nanofibres. The effect was investigated of various parameters such as monomer/oxidant ratio, polymerisation temperature, and the presence of surfactant (Triton X-100 as a non-ionic surfactant) on the morphology and electrical conductivity of nanofibres. The morphology of PANI nanofibres was characterised by scanning electron microscopy and transmission electron microscopy. The results demonstrate that the morphology of PANI nanofibres was significantly influenced by the aniline/APS mole ratio, polymerisation temperature and presence of the surfactant during synthesis. The results showed that more regular and consistent nanofibres were obtained using a monomer/oxidant ratio of 4 at ambient temperature of polymerisation. PANI nanofibres with diameters in the range of 10–100 nm and length up to several μm were obtained. PANI nanofibres were also characterised using FTIR and UV-VIS absorption spectroscopy. The electrochemical behaviour of PANI nanofibres was studied by cyclic voltammetry. It was found that the electrical conductivity of PANI nanofibres increased with the increasing monomer/oxidant ratio and decreasing polymerisation temperature, respectively.

[1] Ansari, R., & Mosayebzadeh, Z. (2011). Application of polyaniline as an efficient and novel adsorbent for azo dyes removal from textile wastewaters. Chemical Papers, 65, 1–8. DOI: 10.2478/s11696-010-0083-x. http://dx.doi.org/10.2478/s11696-010-0083-x10.2478/s11696-010-0083-xSuche in Google Scholar

[2] Carswell, A. D. W., O’Rear, E. A., & Grady, B. P. (2003). Adsorbed surfactants as templates for the synthesis of morphologically controlled polyaniline and polypyrrole nanostructures on flat surfaces: From spheres to wires to flat films. Journal of the American Chemical Society, 125, 14793–14800. DOI: 10.1021/ja0365983. http://dx.doi.org/10.1021/ja036598310.1021/ja0365983Suche in Google Scholar PubMed

[3] Chiou, N. R., & Epstein, A. J. (2005). Polyaniline nanofibers prepared by dilute polymerization. Advanced Materials, 17, 1679–1683. DOI: 10.1002/adma.200401000. http://dx.doi.org/10.1002/adma.20040100010.1002/adma.200401000Suche in Google Scholar

[4] Du, X. S., Zhou, C. F., & Mai, Y. W. (2008). Facile synthesis of hierarchical polyaniline nanostructures with dendritic nanofibers as scaffolds. The Journal of Physical Chemistry C, 112, 19836–19840. DOI: 10.1021/jp8069404. http://dx.doi.org/10.1021/jp806940410.1021/jp8069404Suche in Google Scholar

[5] Goel, S., Gupta, A., Singh, K. P., Mehrotra, R., & Kandpal, H. C. (2007). Optical studies of polyaniline nanostructures. Materials Science and Engineering A, 443, 71–76. DOI: 10.1016/j.msea.2006.08.035. http://dx.doi.org/10.1016/j.msea.2006.08.03510.1016/j.msea.2006.08.035Suche in Google Scholar

[6] He, C., Tan, Y., & Li, Y. (2003). Conducting polyaniline nanofiber networks prepared by the doping induction of camphor sulfonic acid. Journal of Applied Polymer Science, 87, 1537–1540. DOI: 10.1002/app.11599. http://dx.doi.org/10.1002/app.1159910.1002/app.11599Suche in Google Scholar

[7] Huang, H. M., Li, Z. Y., & Wang, C. (2007). An electrospinning approach to polyaniline nanofibers by template. Solid State Phenomena, 121–123, 579–582. DOI: 10.4028/www.scientific.net/ssp.121-123.579. http://dx.doi.org/10.4028/www.scientific.net/SSP.121-123.57910.4028/www.scientific.net/SSP.121-123.579Suche in Google Scholar

[8] Huang, J., & Kaner, R. B. (2004). A general chemical route to polyaniline nanofibers. Journal of the American Chemical Society, 126, 851–855. DOI: 10.1021/ja0371754. http://dx.doi.org/10.1021/ja037175410.1021/ja0371754Suche in Google Scholar PubMed

[9] Jing, X., Wang, Y., Wu, D., & Qiang, J. (2007). Sonochemical synthesis of polyaniline nanofibers. Ultrasonics Sonochemistry, 14, 75–80. DOI: 10.1016/j.ultsonch.2006.02.001. http://dx.doi.org/10.1016/j.ultsonch.2006.02.00110.1016/j.ultsonch.2006.02.001Suche in Google Scholar PubMed

[10] Konyushenko, E. N., Trchová, M., Stejskal, J., & Sapurina, I. (2010). The role of acidity profile in the nanotubular growth of polyaniline. Chemical Papers, 64, 56–64. DOI: 10.2478/s11696-009-0101-z. http://dx.doi.org/10.2478/s11696-009-0101-z10.2478/s11696-009-0101-zSuche in Google Scholar

[11] Li, D., & Kaner, R. B. (2006). Shape and aggregation control of nanoparticles: Not shaken, not stirred. Journal of the American Chemical Society, 128, 968–975. DOI: 10.1021/ja056609n. http://dx.doi.org/10.1021/ja056609n10.1021/ja056609nSuche in Google Scholar PubMed

[12] Li, G., Zhang, C., Li, Y., Peng, H., & Chen, K. (2010). Rapid polymerization initiated by redox initiator for the synthesis of polyaniline nanofibers. Polymer, 51, 1934–1939. DOI: 10.1016/j.polymer.2010.03.004. http://dx.doi.org/10.1016/j.polymer.2010.03.00410.1016/j.polymer.2010.03.004Suche in Google Scholar

[13] Li, G., & Zhang, Z. (2004). Synthesis of dendritic polyaniline nanofibers in a surfactant gel. Macromolecules, 37, 2683–2685. DOI: 10.1021/ma035891k. http://dx.doi.org/10.1021/ma035891k10.1021/ma035891kSuche in Google Scholar

[14] Li, X., Zhuang, T., Wang, G., & Zhao, Y. (2008). Stabilizer-free conducting polyaniline nanofiber aqueous colloids and their stability. Materials Letters, 62, 1431–1434. DOI: 10.1016/j.matlet.2007.08.078. http://dx.doi.org/10.1016/j.matlet.2007.08.07810.1016/j.matlet.2007.08.078Suche in Google Scholar

[15] Liu, J. M., & Yang, S. C. (1991). Novel colloidal polyaniline fibrils made by template guided chemical polymerization. Journal of the Chemical Society, Chemical Communications, 1991, 1529–1531. DOI: 10.1039/c39910001529. http://dx.doi.org/10.1039/c3991000152910.1039/c39910001529Suche in Google Scholar

[16] Marjanović, B., Juranić, I., Mentus, S., Ćirić-Marjanović, G., & Holler, P. (2010). Oxidative polymerization of anilinium 5-sulfosalicylate with peroxydisulfate in water. Chemical Papers, 64, 783–790. DOI: 10.2478/s11696-010-0064-0. http://dx.doi.org/10.2478/s11696-010-0064-010.2478/s11696-010-0064-0Suche in Google Scholar

[17] Martin, C. R. (1996). Membrane-based synthesis of nanomaterials. Chemistry of Materials, 8, 1739–1746. DOI: 10.1021/cm960166s. http://dx.doi.org/10.1021/cm960166s10.1021/cm960166sSuche in Google Scholar

[18] Pillalamarri, S. K., Blum, F. D., Tokuhiro, A. T., Story, J. G., & Bertino, M. F. (2005). Radiolytic synthesis of polyaniline nanofibers: A new templateless pathway. Chemistry of Materials, 17, 227–229. DOI: 10.1021/cm0488478. http://dx.doi.org/10.1021/cm048847810.1021/cm0488478Suche in Google Scholar

[19] Qiang, J., Yu, Z., Wu, H., & Yun, D. (2008). Polyaniline nanofibers synthesized by rapid mixing polymerization. Synthetic Metals, 158, 544–547. DOI: 10.1016/j.synthmet.2008.03.023. http://dx.doi.org/10.1016/j.synthmet.2008.03.02310.1016/j.synthmet.2008.03.023Suche in Google Scholar

[20] Qiu, H., Qi, S., Wang, D., Wang, J., & Wu, X. (2010). Synthesis of polyaniline nanostructures via soft template of sucrose octaacetate. Synthetic Metals, 160, 1179–1183. DOI: 10.1016/j.synthmet.2010.03.005. http://dx.doi.org/10.1016/j.synthmet.2010.03.00510.1016/j.synthmet.2010.03.005Suche in Google Scholar

[21] Rahy, A., Sakrout, M., Manohar, S., Cho, S. J., Ferraris, J., & Yang, D. J. (2008). Polyaniline nanofiber synthesis by co-use of ammonium peroxydisulfate and sodium hypochlorite. Chemistry of Materials, 20, 4808–4814. DOI: 10.1021/cm703678m. http://dx.doi.org/10.1021/cm703678m10.1021/cm703678mSuche in Google Scholar

[22] Rahy, A., & Yang, D. J. (2008). Synthesis of highly conductive polyaniline nanofibers. Materials Letters, 62, 4311–4314. DOI: 10.1016/j.matlet.2008.06.057. http://dx.doi.org/10.1016/j.matlet.2008.06.05710.1016/j.matlet.2008.06.057Suche in Google Scholar

[23] Sarno, D. M., Manohar, S. K., & MacDiarmid, A. G. (2005). Controlled interconversion of semiconducting and metallic forms of polyaniline nanofibers. Synthetic Metals, 148, 237–243. DOI: 10.1016/j.synthmet.2004.09.038. http://dx.doi.org/10.1016/j.synthmet.2004.09.03810.1016/j.synthmet.2004.09.038Suche in Google Scholar

[24] Stejskal, J., Sapurina, I., & Trchová, M. (2010). Polyaniline nanostructures and the role of aniline oligomers in their formation. Progress in Polymer Science, 35, 1420–1481. DOI: 10.1016/j.progpolymsci.2010.07.006. http://dx.doi.org/10.1016/j.progpolymsci.2010.07.00610.1016/j.progpolymsci.2010.07.006Suche in Google Scholar

[25] Su, B., Tong, Y., Bai, J., Lei, Z., Wang, K., Mu, H., & Dong, N. (2007). Acid doped polyaniline nanofibers synthesized by interfacial polymerization. Indian Journal of Chemistry, 46A, 595–599. Suche in Google Scholar

[26] Subramania, A., & Devi, S. L. (2008). Polyaniline nanofibers by surfactant-assisted dilute polymerization for supercapacitor applications. Polymers for Advanced Technologies, 19, 725–727. DOI: 10.1002/pat.1016. http://dx.doi.org/10.1002/pat.101610.1002/pat.1016Suche in Google Scholar

[27] Wang, J., Wang, J., Yang, Z., Wang, Z., Zhang, F., & Wang, S. (2008). A novel strategy for the synthesis of polyaniline nanostructures with controlled morphology. Reactive and Functional Polymers, 68, 1435–1440. DOI: 10.1016/j.reactfunctpolym.2008.07.002. http://dx.doi.org/10.1016/j.reactfunctpolym.2008.07.00210.1016/j.reactfunctpolym.2008.07.002Suche in Google Scholar

[28] Weng, S., Lin, Z., Chen, L., & Zhou, J. (2010). Electrochemical synthesis and optical properties of helical polyaniline nanofibers. Electrochimica Acta, 55, 2727–2733. DOI: 10.1016/j.electacta.2009.12.032. http://dx.doi.org/10.1016/j.electacta.2009.12.03210.1016/j.electacta.2009.12.032Suche in Google Scholar

[29] Wu, C. G., & Bein, T. (1994). Conducting polyaniline filaments in a mesoporous channel host. Science, 264, 1757–1759. DOI: 10.1126/science.264.5166.1757. http://dx.doi.org/10.1126/science.264.5166.175710.1126/science.264.5166.1757Suche in Google Scholar PubMed

[30] Xing, S., Zhao, C., Jing, S., & Wang, Z. (2006). Morphology and conductivity of polyaniline nanofibers prepared by ’seeding’ polymerization. Polymer, 47, 2305–2313. DOI: 10.1016/j.polymer.2006.02.008. http://dx.doi.org/10.1016/j.polymer.2006.02.00810.1016/j.polymer.2006.02.008Suche in Google Scholar

[31] Xing, S., Zheng, H., & Zhao, G. (2008). Preparation of polyaniline nanofibers via a novel interfacial polymerization method. Synthetic Metals, 158, 59–63. DOI: 10.1016/j.synthmet.2007.12.004. http://dx.doi.org/10.1016/j.synthmet.2007.12.00410.1016/j.synthmet.2007.12.004Suche in Google Scholar

[32] Yang, C. H., Chih, Y. K., Cheng, H. E., & Chen, C. H. (2005). Nanofibers of self-doped polyaniline. Polymer, 46, 10688–10698. DOI: 10.1016/j.polymer.2005.09.044. http://dx.doi.org/10.1016/j.polymer.2005.09.04410.1016/j.polymer.2005.09.044Suche in Google Scholar

[33] Zhang, X., Chan-Yu-King, R., Jose, A., & Manohar, S. K. (2004). Nanofibers of polyaniline synthesized by interfacial polymerization. Synthetic Metals, 145, 23–29. DOI: 10.1016/j.synthmet.2004.03.012. http://dx.doi.org/10.1016/j.synthmet.2004.03.01210.1016/j.synthmet.2004.03.012Suche in Google Scholar

[34] Zhang, C., Li, G., & Pengn, H. (2009). Large-scale synthesis of self-doped polyaniline nanofibers. Materials Letters, 63, 592–594. DOI: 10.1016/j.matlet.2008.11.041. http://dx.doi.org/10.1016/j.matlet.2008.11.04110.1016/j.matlet.2008.11.041Suche in Google Scholar

[35] Zhang, X., & Manohar, S. K. (2004). Polyaniline nanofibers: chemical synthesis using surfactants. Chemical Communications, 2004, 2360–2361. DOI: 10.1039/b409309g. http://dx.doi.org/10.1039/b409309g10.1039/b409309gSuche in Google Scholar PubMed

[36] Zhao, W., Ma, L., & Lu, K. (2007). Facile synthesis of polyaniline nanofibers in the presence of polyethylene glycol. Journal of Polymer Research, 14, 1–4. DOI: 10.1007/s10965-006-9069-3. http://dx.doi.org/10.1007/s10965-006-9069-310.1007/s10965-006-9069-3Suche in Google Scholar

Published Online: 2012-6-19
Published in Print: 2012-8-1

© 2012 Institute of Chemistry, Slovak Academy of Sciences

Heruntergeladen am 27.11.2025 von https://www.degruyterbrill.com/document/doi/10.2478/s11696-012-0197-4/pdf?lang=de
Button zum nach oben scrollen