Abstract
Polyaniline (PANI) nanofibres were synthesised by the chemical oxidative polymerisation method using ammonium peroxydisulphate (APS) as an oxidant/initiator. In this work, a surfactant-assisted method without shaking and stirring was used for the synthesis of PANI nanofibres. The effect was investigated of various parameters such as monomer/oxidant ratio, polymerisation temperature, and the presence of surfactant (Triton X-100 as a non-ionic surfactant) on the morphology and electrical conductivity of nanofibres. The morphology of PANI nanofibres was characterised by scanning electron microscopy and transmission electron microscopy. The results demonstrate that the morphology of PANI nanofibres was significantly influenced by the aniline/APS mole ratio, polymerisation temperature and presence of the surfactant during synthesis. The results showed that more regular and consistent nanofibres were obtained using a monomer/oxidant ratio of 4 at ambient temperature of polymerisation. PANI nanofibres with diameters in the range of 10–100 nm and length up to several μm were obtained. PANI nanofibres were also characterised using FTIR and UV-VIS absorption spectroscopy. The electrochemical behaviour of PANI nanofibres was studied by cyclic voltammetry. It was found that the electrical conductivity of PANI nanofibres increased with the increasing monomer/oxidant ratio and decreasing polymerisation temperature, respectively.
[1] Ansari, R., & Mosayebzadeh, Z. (2011). Application of polyaniline as an efficient and novel adsorbent for azo dyes removal from textile wastewaters. Chemical Papers, 65, 1–8. DOI: 10.2478/s11696-010-0083-x. http://dx.doi.org/10.2478/s11696-010-0083-x10.2478/s11696-010-0083-xSearch in Google Scholar
[2] Carswell, A. D. W., O’Rear, E. A., & Grady, B. P. (2003). Adsorbed surfactants as templates for the synthesis of morphologically controlled polyaniline and polypyrrole nanostructures on flat surfaces: From spheres to wires to flat films. Journal of the American Chemical Society, 125, 14793–14800. DOI: 10.1021/ja0365983. http://dx.doi.org/10.1021/ja036598310.1021/ja0365983Search in Google Scholar PubMed
[3] Chiou, N. R., & Epstein, A. J. (2005). Polyaniline nanofibers prepared by dilute polymerization. Advanced Materials, 17, 1679–1683. DOI: 10.1002/adma.200401000. http://dx.doi.org/10.1002/adma.20040100010.1002/adma.200401000Search in Google Scholar
[4] Du, X. S., Zhou, C. F., & Mai, Y. W. (2008). Facile synthesis of hierarchical polyaniline nanostructures with dendritic nanofibers as scaffolds. The Journal of Physical Chemistry C, 112, 19836–19840. DOI: 10.1021/jp8069404. http://dx.doi.org/10.1021/jp806940410.1021/jp8069404Search in Google Scholar
[5] Goel, S., Gupta, A., Singh, K. P., Mehrotra, R., & Kandpal, H. C. (2007). Optical studies of polyaniline nanostructures. Materials Science and Engineering A, 443, 71–76. DOI: 10.1016/j.msea.2006.08.035. http://dx.doi.org/10.1016/j.msea.2006.08.03510.1016/j.msea.2006.08.035Search in Google Scholar
[6] He, C., Tan, Y., & Li, Y. (2003). Conducting polyaniline nanofiber networks prepared by the doping induction of camphor sulfonic acid. Journal of Applied Polymer Science, 87, 1537–1540. DOI: 10.1002/app.11599. http://dx.doi.org/10.1002/app.1159910.1002/app.11599Search in Google Scholar
[7] Huang, H. M., Li, Z. Y., & Wang, C. (2007). An electrospinning approach to polyaniline nanofibers by template. Solid State Phenomena, 121–123, 579–582. DOI: 10.4028/www.scientific.net/ssp.121-123.579. http://dx.doi.org/10.4028/www.scientific.net/SSP.121-123.57910.4028/www.scientific.net/SSP.121-123.579Search in Google Scholar
[8] Huang, J., & Kaner, R. B. (2004). A general chemical route to polyaniline nanofibers. Journal of the American Chemical Society, 126, 851–855. DOI: 10.1021/ja0371754. http://dx.doi.org/10.1021/ja037175410.1021/ja0371754Search in Google Scholar PubMed
[9] Jing, X., Wang, Y., Wu, D., & Qiang, J. (2007). Sonochemical synthesis of polyaniline nanofibers. Ultrasonics Sonochemistry, 14, 75–80. DOI: 10.1016/j.ultsonch.2006.02.001. http://dx.doi.org/10.1016/j.ultsonch.2006.02.00110.1016/j.ultsonch.2006.02.001Search in Google Scholar PubMed
[10] Konyushenko, E. N., Trchová, M., Stejskal, J., & Sapurina, I. (2010). The role of acidity profile in the nanotubular growth of polyaniline. Chemical Papers, 64, 56–64. DOI: 10.2478/s11696-009-0101-z. http://dx.doi.org/10.2478/s11696-009-0101-z10.2478/s11696-009-0101-zSearch in Google Scholar
[11] Li, D., & Kaner, R. B. (2006). Shape and aggregation control of nanoparticles: Not shaken, not stirred. Journal of the American Chemical Society, 128, 968–975. DOI: 10.1021/ja056609n. http://dx.doi.org/10.1021/ja056609n10.1021/ja056609nSearch in Google Scholar PubMed
[12] Li, G., Zhang, C., Li, Y., Peng, H., & Chen, K. (2010). Rapid polymerization initiated by redox initiator for the synthesis of polyaniline nanofibers. Polymer, 51, 1934–1939. DOI: 10.1016/j.polymer.2010.03.004. http://dx.doi.org/10.1016/j.polymer.2010.03.00410.1016/j.polymer.2010.03.004Search in Google Scholar
[13] Li, G., & Zhang, Z. (2004). Synthesis of dendritic polyaniline nanofibers in a surfactant gel. Macromolecules, 37, 2683–2685. DOI: 10.1021/ma035891k. http://dx.doi.org/10.1021/ma035891k10.1021/ma035891kSearch in Google Scholar
[14] Li, X., Zhuang, T., Wang, G., & Zhao, Y. (2008). Stabilizer-free conducting polyaniline nanofiber aqueous colloids and their stability. Materials Letters, 62, 1431–1434. DOI: 10.1016/j.matlet.2007.08.078. http://dx.doi.org/10.1016/j.matlet.2007.08.07810.1016/j.matlet.2007.08.078Search in Google Scholar
[15] Liu, J. M., & Yang, S. C. (1991). Novel colloidal polyaniline fibrils made by template guided chemical polymerization. Journal of the Chemical Society, Chemical Communications, 1991, 1529–1531. DOI: 10.1039/c39910001529. http://dx.doi.org/10.1039/c3991000152910.1039/c39910001529Search in Google Scholar
[16] Marjanović, B., Juranić, I., Mentus, S., Ćirić-Marjanović, G., & Holler, P. (2010). Oxidative polymerization of anilinium 5-sulfosalicylate with peroxydisulfate in water. Chemical Papers, 64, 783–790. DOI: 10.2478/s11696-010-0064-0. http://dx.doi.org/10.2478/s11696-010-0064-010.2478/s11696-010-0064-0Search in Google Scholar
[17] Martin, C. R. (1996). Membrane-based synthesis of nanomaterials. Chemistry of Materials, 8, 1739–1746. DOI: 10.1021/cm960166s. http://dx.doi.org/10.1021/cm960166s10.1021/cm960166sSearch in Google Scholar
[18] Pillalamarri, S. K., Blum, F. D., Tokuhiro, A. T., Story, J. G., & Bertino, M. F. (2005). Radiolytic synthesis of polyaniline nanofibers: A new templateless pathway. Chemistry of Materials, 17, 227–229. DOI: 10.1021/cm0488478. http://dx.doi.org/10.1021/cm048847810.1021/cm0488478Search in Google Scholar
[19] Qiang, J., Yu, Z., Wu, H., & Yun, D. (2008). Polyaniline nanofibers synthesized by rapid mixing polymerization. Synthetic Metals, 158, 544–547. DOI: 10.1016/j.synthmet.2008.03.023. http://dx.doi.org/10.1016/j.synthmet.2008.03.02310.1016/j.synthmet.2008.03.023Search in Google Scholar
[20] Qiu, H., Qi, S., Wang, D., Wang, J., & Wu, X. (2010). Synthesis of polyaniline nanostructures via soft template of sucrose octaacetate. Synthetic Metals, 160, 1179–1183. DOI: 10.1016/j.synthmet.2010.03.005. http://dx.doi.org/10.1016/j.synthmet.2010.03.00510.1016/j.synthmet.2010.03.005Search in Google Scholar
[21] Rahy, A., Sakrout, M., Manohar, S., Cho, S. J., Ferraris, J., & Yang, D. J. (2008). Polyaniline nanofiber synthesis by co-use of ammonium peroxydisulfate and sodium hypochlorite. Chemistry of Materials, 20, 4808–4814. DOI: 10.1021/cm703678m. http://dx.doi.org/10.1021/cm703678m10.1021/cm703678mSearch in Google Scholar
[22] Rahy, A., & Yang, D. J. (2008). Synthesis of highly conductive polyaniline nanofibers. Materials Letters, 62, 4311–4314. DOI: 10.1016/j.matlet.2008.06.057. http://dx.doi.org/10.1016/j.matlet.2008.06.05710.1016/j.matlet.2008.06.057Search in Google Scholar
[23] Sarno, D. M., Manohar, S. K., & MacDiarmid, A. G. (2005). Controlled interconversion of semiconducting and metallic forms of polyaniline nanofibers. Synthetic Metals, 148, 237–243. DOI: 10.1016/j.synthmet.2004.09.038. http://dx.doi.org/10.1016/j.synthmet.2004.09.03810.1016/j.synthmet.2004.09.038Search in Google Scholar
[24] Stejskal, J., Sapurina, I., & Trchová, M. (2010). Polyaniline nanostructures and the role of aniline oligomers in their formation. Progress in Polymer Science, 35, 1420–1481. DOI: 10.1016/j.progpolymsci.2010.07.006. http://dx.doi.org/10.1016/j.progpolymsci.2010.07.00610.1016/j.progpolymsci.2010.07.006Search in Google Scholar
[25] Su, B., Tong, Y., Bai, J., Lei, Z., Wang, K., Mu, H., & Dong, N. (2007). Acid doped polyaniline nanofibers synthesized by interfacial polymerization. Indian Journal of Chemistry, 46A, 595–599. Search in Google Scholar
[26] Subramania, A., & Devi, S. L. (2008). Polyaniline nanofibers by surfactant-assisted dilute polymerization for supercapacitor applications. Polymers for Advanced Technologies, 19, 725–727. DOI: 10.1002/pat.1016. http://dx.doi.org/10.1002/pat.101610.1002/pat.1016Search in Google Scholar
[27] Wang, J., Wang, J., Yang, Z., Wang, Z., Zhang, F., & Wang, S. (2008). A novel strategy for the synthesis of polyaniline nanostructures with controlled morphology. Reactive and Functional Polymers, 68, 1435–1440. DOI: 10.1016/j.reactfunctpolym.2008.07.002. http://dx.doi.org/10.1016/j.reactfunctpolym.2008.07.00210.1016/j.reactfunctpolym.2008.07.002Search in Google Scholar
[28] Weng, S., Lin, Z., Chen, L., & Zhou, J. (2010). Electrochemical synthesis and optical properties of helical polyaniline nanofibers. Electrochimica Acta, 55, 2727–2733. DOI: 10.1016/j.electacta.2009.12.032. http://dx.doi.org/10.1016/j.electacta.2009.12.03210.1016/j.electacta.2009.12.032Search in Google Scholar
[29] Wu, C. G., & Bein, T. (1994). Conducting polyaniline filaments in a mesoporous channel host. Science, 264, 1757–1759. DOI: 10.1126/science.264.5166.1757. http://dx.doi.org/10.1126/science.264.5166.175710.1126/science.264.5166.1757Search in Google Scholar PubMed
[30] Xing, S., Zhao, C., Jing, S., & Wang, Z. (2006). Morphology and conductivity of polyaniline nanofibers prepared by ’seeding’ polymerization. Polymer, 47, 2305–2313. DOI: 10.1016/j.polymer.2006.02.008. http://dx.doi.org/10.1016/j.polymer.2006.02.00810.1016/j.polymer.2006.02.008Search in Google Scholar
[31] Xing, S., Zheng, H., & Zhao, G. (2008). Preparation of polyaniline nanofibers via a novel interfacial polymerization method. Synthetic Metals, 158, 59–63. DOI: 10.1016/j.synthmet.2007.12.004. http://dx.doi.org/10.1016/j.synthmet.2007.12.00410.1016/j.synthmet.2007.12.004Search in Google Scholar
[32] Yang, C. H., Chih, Y. K., Cheng, H. E., & Chen, C. H. (2005). Nanofibers of self-doped polyaniline. Polymer, 46, 10688–10698. DOI: 10.1016/j.polymer.2005.09.044. http://dx.doi.org/10.1016/j.polymer.2005.09.04410.1016/j.polymer.2005.09.044Search in Google Scholar
[33] Zhang, X., Chan-Yu-King, R., Jose, A., & Manohar, S. K. (2004). Nanofibers of polyaniline synthesized by interfacial polymerization. Synthetic Metals, 145, 23–29. DOI: 10.1016/j.synthmet.2004.03.012. http://dx.doi.org/10.1016/j.synthmet.2004.03.01210.1016/j.synthmet.2004.03.012Search in Google Scholar
[34] Zhang, C., Li, G., & Pengn, H. (2009). Large-scale synthesis of self-doped polyaniline nanofibers. Materials Letters, 63, 592–594. DOI: 10.1016/j.matlet.2008.11.041. http://dx.doi.org/10.1016/j.matlet.2008.11.04110.1016/j.matlet.2008.11.041Search in Google Scholar
[35] Zhang, X., & Manohar, S. K. (2004). Polyaniline nanofibers: chemical synthesis using surfactants. Chemical Communications, 2004, 2360–2361. DOI: 10.1039/b409309g. http://dx.doi.org/10.1039/b409309g10.1039/b409309gSearch in Google Scholar PubMed
[36] Zhao, W., Ma, L., & Lu, K. (2007). Facile synthesis of polyaniline nanofibers in the presence of polyethylene glycol. Journal of Polymer Research, 14, 1–4. DOI: 10.1007/s10965-006-9069-3. http://dx.doi.org/10.1007/s10965-006-9069-310.1007/s10965-006-9069-3Search in Google Scholar
© 2012 Institute of Chemistry, Slovak Academy of Sciences
Articles in the same Issue
- Determination of total petroleum hydrocarbons in soil from different locations using infrared spectrophotometry and gas chromatography
- Effect of Ag-doping of nanosized FeMgO system on its structural, surface, spectral, and catalytic properties
- Synthesis of new dendritic antenna-like polypyridine ligands
- Solvothermal synthesis of hollow Eu2O3 microspheres using carbon template-assisted method
- Effect of substrate on phase formation and surface morphology of sol-gel lead-free KNbO3, NaNbO3, and K0.5Na0.5NbO3 thin films
- Surfactant-assisted synthesis of polyaniline nanofibres without shaking and stirring: effect of conditions on morphology and conductivity
- Novel ammonium phosphinates containing peptide moiety: Synthesis, structure, and in vitro antimicrobial activity
- Reduction of aromatic nitro compounds to amines using zinc and aqueous chelating ethers: Mild and efficient method for zinc activation
- Ethylcellulose, polycaprolactone, and eudragit matrices for controlled release of piroxicam from tablets and microspheres
- Spectroscopic investigation of interaction of 6-methoxyflavanone and its β-cyclodextrin inclusion complex with calf thymus DNA
- Photosynthesis-inhibiting effects of 2-benzylsulphanylbenzimidazoles in spinach chloroplasts
- Investigation of structure of milled wood and dioxane lignins of Populus nigra and Cupressus sempervirens using the DFRC method
Articles in the same Issue
- Determination of total petroleum hydrocarbons in soil from different locations using infrared spectrophotometry and gas chromatography
- Effect of Ag-doping of nanosized FeMgO system on its structural, surface, spectral, and catalytic properties
- Synthesis of new dendritic antenna-like polypyridine ligands
- Solvothermal synthesis of hollow Eu2O3 microspheres using carbon template-assisted method
- Effect of substrate on phase formation and surface morphology of sol-gel lead-free KNbO3, NaNbO3, and K0.5Na0.5NbO3 thin films
- Surfactant-assisted synthesis of polyaniline nanofibres without shaking and stirring: effect of conditions on morphology and conductivity
- Novel ammonium phosphinates containing peptide moiety: Synthesis, structure, and in vitro antimicrobial activity
- Reduction of aromatic nitro compounds to amines using zinc and aqueous chelating ethers: Mild and efficient method for zinc activation
- Ethylcellulose, polycaprolactone, and eudragit matrices for controlled release of piroxicam from tablets and microspheres
- Spectroscopic investigation of interaction of 6-methoxyflavanone and its β-cyclodextrin inclusion complex with calf thymus DNA
- Photosynthesis-inhibiting effects of 2-benzylsulphanylbenzimidazoles in spinach chloroplasts
- Investigation of structure of milled wood and dioxane lignins of Populus nigra and Cupressus sempervirens using the DFRC method