Startseite Electronic structures and spectroscopic regularities of phenylene-modified SWCNTs
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Electronic structures and spectroscopic regularities of phenylene-modified SWCNTs

  • Xinwei Huang EMAIL logo , Zhengyuan Tu , Zipeng Ma und Shi Wu
Veröffentlicht/Copyright: 16. März 2011
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The equilibrium geometries and electronic structures for a series of single-wall carbon nanotubes (SWCNTs) modified with phenylene were studied using the density functional theory (DFT) at the B3LYP/6-31G(d) level. Of the four configurations of the phenylene-modified SWCNTs, the v-configuration in which the bond is perpendicular to the main axis of the SWCNT is the most thermodynamically stable. The increase in radii of the modified SWCNTs generally leads to a decrease in the energy gaps. The first absorptions in the electronic spectra of the modified SWCNTs compared with those in the electronic spectra of pristine SWCNTs are basically red-shifted. The chemical shifts of bridged carbon atoms connected with phenylene in the v-configuration are shifted downfield relative to those of the pristine SWCNTs. The aromaticity of the rings in SWCNTs is improved owing to the addition of phenylene.

[1] Agboola, B. O., & Ozoemena, K. I. (2010). Synergistic enhancement of supercapacitance upon integration of nickel(II) octa[(3,5-biscarboxylate)-phenoxy]phthalocyanine with SWCNT-phenylamine. Journal of Power Sources, 195, 3841–3848. DOI: 10.1016/j.jpowsour.2009.12.095. http://dx.doi.org/10.1016/j.jpowsour.2009.12.09510.1016/j.jpowsour.2009.12.095Suche in Google Scholar

[2] Aihara, J. (2000). Correlation found between the HOMOLUMO energy separation and the chemical reactivity at the most reactive site for isolated-pentagon isomers of fullerenes. Physical Chemistry Chemical Physics, 2, 3121–3125. DOI: 10.1039/B002601H. http://dx.doi.org/10.1039/b002601h10.1039/b002601hSuche in Google Scholar

[3] Aihara, J. (1999). Weighed HOMO-LUMO energy separation as an index of kinetic stability for fullerenes. Theoretical Chemistry Accounts, 102, 134–138. DOI: 10.1007/s002140050483. http://dx.doi.org/10.1007/s00214005048310.1007/s002140050483Suche in Google Scholar

[4] Akdim, B., Kar, T., Duan, X., & Pachter, R. (2007). Density functional theory calculations of ozone adsorption on sidewall single-wall carbon nanotubes with Stone-Wales defects. Chemical Physics Letters, 445, 281–287. DOI: 10.1016/j.cplett.2007.08.001. http://dx.doi.org/10.1016/j.cplett.2007.08.00110.1016/j.cplett.2007.08.001Suche in Google Scholar

[5] Alver, Ö, & Şenyel, M. (2010). Vibrational spectroscopic and conformational studies of 1-(4-pyridyl)piperazine. Chemical Papers, 64, 504–514 DOI: 10.2478/s11696-010-0021-y. http://dx.doi.org/10.2478/s11696-010-0021-y10.2478/s11696-010-0021-ySuche in Google Scholar

[6] An, W., & Turner, C. H. (2009). Transition-metal strings templated on boron-doped carbon nanotubes: a DFT investigation. Journal of Physical Chemistry C, 113, 15346–15354. DOI: 10.1021/jp9052715. http://dx.doi.org/10.1021/jp905271510.1021/jp9052715Suche in Google Scholar

[7] Becke, A. D. (1993). Density-functional thermochemistry. III. The role of exact exchange. Journal of Chemical Physics, 98, 5648–5652. DOI: 10.1063/1.464913. http://dx.doi.org/10.1063/1.46491310.1063/1.464913Suche in Google Scholar

[8] Burghard, M. (2005). Electronic and vibrational properties of chemically modified single-wall carbon nanotubes. Surface Science Reports, 58, 1–109. DOI: 10.1016/j.surfrep.2005.07.001. 10.1016/j.surfrep.2005.07.001Suche in Google Scholar

[9] Chen, Z., & King, R. B. (2005). Spherical aromaticity: recent work on fullerenes, polyhedral boranes, and related structures. Chemical Reviews, 105, 3613–3642. DOI: 10.1021/cr0300892. http://dx.doi.org/10.1021/cr030089210.1021/cr0300892Suche in Google Scholar PubMed

[10] Chen, Z., Wannere, C. S., Corminboeuf, C., Puchta, R., & von Ragué Schleyer, P. (2005). Nucleus-independent chemical shifts (NICS) as an aromaticity criterion. Chemical Reviews, 105, 3842–3888. DOI: 10.1021/cr030088+. http://dx.doi.org/10.1021/cr030088+10.1021/cr030088+Suche in Google Scholar PubMed

[11] Chu, Y.-Y., & Su, M.-D. (2004). Theoretical study of addition reactions of carbene, silylene, and germylene to carbon nanotubes. Chemical Physics Letters, 394, 231–237. DOI: 10.1016/j.cplett.2004.07.009. http://dx.doi.org/10.1016/j.cplett.2004.07.00910.1016/j.cplett.2004.07.009Suche in Google Scholar

[12] Cosnier, S., & Holzinger, M. (2008). Design of carbon nanotubepolymer frameworks by electropolymerization of SWCNT-pyrrole derivatives. Electrochimica Acta, 53, 3948–3954. DOI: 10.1016/j.electacta.2007.10.027. http://dx.doi.org/10.1016/j.electacta.2007.10.02710.1016/j.electacta.2007.10.027Suche in Google Scholar

[13] Ding, L., Ding, Y.-Q., Teng, Q.-W., & Wang, K. (2007). The effect of substituents on the fluorescent properties of para-phenylenevinylene. Journal of the Chinese Chemical Society, 54, 853–860. 10.1002/jccs.200700124Suche in Google Scholar

[14] Ding, L., Ding, Y.-Q., Teng, Q.-W., & Wang, K. (2008). Electronic structures and spectroscopy of luminescent para-phenylenevinylene oligomers. Chinese Journal of Chemistry, 26, 97–100. DOI: 10.1002/cjoc.200890044. http://dx.doi.org/10.1002/cjoc.20089004410.1002/cjoc.200890044Suche in Google Scholar

[15] Ding, Y., Gao, P., Qin, L., & Teng, Q. (2009). Investigation on stabilities and spectroscopy of C80O2 based on C80 (D 5d) using density function theory. International Journal of Quantum Chemistry, 109, 693–700. DOI: 10.1002/qua.21885. http://dx.doi.org/10.1002/qua.2188510.1002/qua.21885Suche in Google Scholar

[16] Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Montgomery, J. A, Vreven, T., Jr., Kudin, K. N., Burant, J. C., Millam, J. M., Iyengar, S. S., Tomasi, J., Barone, V., Mennucci, B., Cossi, M., Scalmani, G., Rega, N., Petersson, G. A., Nakatsuji, H., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Klene, M., Li, X., Knox, J.E., Hratchian, H. P., Cross, J.B., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Ayala, P. Y., Morokuma, K., Voth, G. A., Salvador, P., Dannenberg, J. J., Zakrzewski, V. G., Dapprich, S., Daniels, A. D., Strain, M. C., Farkas, O., Malick, D. K., Rabuck, A. D., Raghavachari, K., Foresman, J. B., Ortiz, J. V., Cui, Q., Baboul, A. G., Clifford, S., Cioslowski, J., Stefanov, B. B., Liu, G., Liashenko, A., Piskorz, P., Komaromi, I., Martin, R. L., Fox, D. J., Keith, T., Al-Laham, M. A., Peng, C. Y., Nanayakkara, A., Challacombe, M., Gill, P. M. W., Johnson, B., Chen, W., Wong, M. W., Gonzalez, C., & Pople, J. A. (2003). Gaussian 03, Revision B. 01. Pittsburgh, PA, USA: Gaussian, Inc. Suche in Google Scholar

[17] Gao, P., Yu, Y., Ni, Z., & Teng, Q. (2010). Theoretical studies on the electronic structures and spectra of single silicon-doped SWCNTs. Central European Journal of Chemistry, 8, 587–593. DOI: 10.2478/s11532-010-0018-y. http://dx.doi.org/10.2478/s11532-010-0018-y10.2478/s11532-010-0018-ySuche in Google Scholar

[18] Geerlings, P., De Proft, F., & Langenaeker, W. (2003). Conceptual density functional theory. Chemical Reviews, 103, 1793–1874. DOI: 10.1021/cr990029p. http://dx.doi.org/10.1021/cr990029p10.1021/cr990029pSuche in Google Scholar

[19] Gill, P. M. W., Johnson, B. G., & Pople, J. A. (1993). A standard grid for density functional calculations. Chemical Physics Letters, 209, 506–512. DOI: 10.1016/0009-2614(93)80125-9. http://dx.doi.org/10.1016/0009-2614(93)80125-910.1016/0009-2614(93)80125-9Suche in Google Scholar

[20] Gołąbczak, J., Strąkowska, J., & Konstantynowicz, A. (2005). Dynamics of evening primrose protein hydrolysis. Chemical Papers, 59, 409–412. Suche in Google Scholar

[21] Gotovac, S., Yang, C.-M., Hattori, Y., Takahashi, K., Kanoh, H., & Kaneko, K. (2007). Adsorption of polyaromatic hydrocarbons on single wall carbon nanotubes of different functionalities and diameters. Journal of Colloid and Interface Science, 314, 18–24. DOI: 10.1016/j.jcis.2007.04.080. http://dx.doi.org/10.1016/j.jcis.2007.04.08010.1016/j.jcis.2007.04.080Suche in Google Scholar PubMed

[22] Gupta, V., & Miura, N. (2006). Influence of the microstructure on the supercapacitive behavior of polyaniline/singlewall carbon nanotube composites. Journal of Power Sources, 157, 616–620. DOI: 10.1016/j.jpowsour.2005.07.046. http://dx.doi.org/10.1016/j.jpowsour.2005.07.04610.1016/j.jpowsour.2005.07.046Suche in Google Scholar

[23] Haddad, R., Holzinger, M., Maaref, A., & Cosnier, S. (2010). Pyrene functionalized single-walled carbon nanotubes as precursors for high performance biosensors. Electrochimica Acta, 55, 7800–7803. DOI: 10.1016/j.electacta.2010.03.021. http://dx.doi.org/10.1016/j.electacta.2010.03.02110.1016/j.electacta.2010.03.021Suche in Google Scholar

[24] Janjić, G. V., Milčić, M. K., & Zarić, S. D. (2009). Intramolecular MLOH/π and MLNH/π interactions in crystal structures of metal complexes. Chemical Papers, 63, 298–305. DOI: 10.2478/s11696-009-0020-z. http://dx.doi.org/10.2478/s11696-009-0020-z10.2478/s11696-009-0020-zSuche in Google Scholar

[25] Kar, T., Akdim, B., Duan, X., & Pachter, R. (2006). Openended modified single-wall carbon nanotubes: A theoretical study of the effects of purification. Chemical Physics Letters, 423, 126–130. DOI: 10.1016/j.cplett.2006.02.089. http://dx.doi.org/10.1016/j.cplett.2006.02.08910.1016/j.cplett.2006.02.089Suche in Google Scholar

[26] Koleva, B. B., Kolev, T. M., & Todorov, S. (2007). Structural and spectroscopic analysis of dipeptide L-methionyl-glycine and its hydrochloride. Chemical Papers, 61, 490–496. DOI: 10.2478/s11696-007-0067-7. http://dx.doi.org/10.2478/s11696-007-0067-710.2478/s11696-007-0067-7Suche in Google Scholar

[27] Kóňa, J., & Tvaroška, I. (2009). Comparative DFT study on the α-glycosidic bond in reactive species of galactosyl diphosphates. Chemical Papers, 63, 598–607. DOI: 10.2478/s11696-009-0060-4. http://dx.doi.org/10.2478/s11696-009-0060-410.2478/s11696-009-0060-4Suche in Google Scholar

[28] Lee, C., Yang, W., & Parr, R. G. (1988). Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Physical Review B, 37, 785–789. DOI: 10.1103/PhysRevB.37.785. http://dx.doi.org/10.1103/PhysRevB.37.78510.1103/PhysRevB.37.785Suche in Google Scholar

[29] Lin, Y., Cai, W., & Shao, X. (2006). Formation and stability of parallel carbon nanotube junctions. Journal of Molecular Structure: THEOCHEM, 767, 87–93. DOI: 10.1016/j.theochem.2006.05.003. http://dx.doi.org/10.1016/j.theochem.2006.05.00310.1016/j.theochem.2006.05.003Suche in Google Scholar

[30] Lu, X., & Chen, Z. (2005). Curved π-conjugation, aromaticity, and the related chemistry of small fullerenes (<C60) and single-walled carbon nanotubes. Chemical Reviews, 105, 3643–3696. DOI: 10.1021/cr030093d. http://dx.doi.org/10.1021/cr030093d10.1021/cr030093dSuche in Google Scholar PubMed

[31] Mugadza, T., & Nyokong, T. (2009). Synthesis and characterization of electrocatalytic conjugates of tetraamino cobalt (II) phthalocyanine and single wall carbon nanotubes. Electrochimica Acta, 54, 6347–6353. DOI: 10.1016/j.electacta.2009.05.074. http://dx.doi.org/10.1016/j.electacta.2009.05.07410.1016/j.electacta.2009.05.074Suche in Google Scholar

[32] Nayak, R. R., Lee, K. Y., Shanmugharaj, A. M., & Ryu, S. H. (2007). Synthesis and characterization of styrene grafted carbon nanotube and its polystyrene nanocomposite. European Polymer Journal, 43, 4916–4923. DOI: 10.1016/j.eurpolymj.2007.04.012. http://dx.doi.org/10.1016/j.eurpolymj.2007.04.01210.1016/j.eurpolymj.2007.04.012Suche in Google Scholar

[33] Ouyang, M., Huang, J.-L., Cheung, C. L., & Lieber, C. M. (2001). Energy gaps in “metallic” single-walled carbon nanotubes. Science, 292, 702–705. DOI: 10.1126/science.1058853. http://dx.doi.org/10.1126/science.105885310.1126/science.1058853Suche in Google Scholar PubMed

[34] Parr, R. G., & Yang, W. (1989). Density-functional theory of atoms and molecules. New York, NY, USA: Oxford University Press. Suche in Google Scholar

[35] Ren, X., Luo, Z., Du, J., & Wu, S. (2010). Theoretical binding affinities and spectroscopy of complexes formed by cyclobis(paraquat-p-anthrancene) with some pharmaceutical molecules. Russian Journal of Physical Chemistry A, 84, 826–830. DOI: 10.1134/S0036024410050201. http://dx.doi.org/10.1134/S003602441005020110.1134/S0036024410050201Suche in Google Scholar

[36] Ridley, J., & Zerner, M. C. (1973). An intermediate neglect of differential overlap technique for spectroscopy: Pyrrole and the azines. Theoretica Chimica Acta, 32, 111–134. DOI: 10.1007/BF00528484. http://dx.doi.org/10.1007/BF0052848410.1007/BF00528484Suche in Google Scholar

[37] Smieško, M., & Remko, M. (2005). Structure and gas-phase stability of Zn(II)—molecule complexes. Chemical Papers, 59, 310–315. Suche in Google Scholar

[38] Šramko, M., Šille, J., Ježko, P., & Garaj, V. (2010). Effect of dielectric medium on angiotensin converting enzyme inhibitors binding to Zn2+. Chemical Papers, 64, 395–404. DOI: 10.2478/s11696-010-0005-y. http://dx.doi.org/10.2478/s11696-010-0005-y10.2478/s11696-010-0005-ySuche in Google Scholar

[39] Stylianakis, M. M., Mikroyannidis, J. A., & Kymakis, E. (2010). A facile, covalent modification of single-wall carbon nanotubes by thiophene for use in organic photovoltaic cells. Solar Energy Materials & Solar Cells, 94, 267–274. DOI: 10.1016/j.solmat.2009.09.013. http://dx.doi.org/10.1016/j.solmat.2009.09.01310.1016/j.solmat.2009.09.013Suche in Google Scholar

[40] Su, N., Guo, Q., & Wu, S. (2008). Stability and spectroscopic studies on oxygenated armchair SWCNTs. Indian Journal of Chemistry Section A, 47A, 1473–1479. Suche in Google Scholar

[41] Sun, H., Yun, X., Wu, S., & Teng, Q. (2008). Theoretical studies on stabilities, 13C and 3He NMR spectroscopy of C84O derived from C84 (D 2d). Journal of Molecular Structure: THEOCHEM, 868, 71–77. DOI: 10.1016/j.theochem.2008.08.007. http://dx.doi.org/10.1016/j.theochem.2008.08.00710.1016/j.theochem.2008.08.007Suche in Google Scholar

[42] Sun, Y., Du, J., Wang, Y., & Wu, S. (2010). Theoretical binding affinities and spectra of complexes formed by a cyclic β-peptoid with amino acids. Chemical Papers, 64, 515–522. DOI: 10.2478/s11696-010-0029-3. http://dx.doi.org/10.2478/s11696-010-0029-310.2478/s11696-010-0029-3Suche in Google Scholar

[43] Taylor, R., Hare, J. P., Abdul-Sada, A. K., & Kroto, H. W. (1990). Isolation, seperation and characterisation of the fullerenes C60 and C70: the third form of carbon. Journal of the Chemical Society, Chemical Communications, 1990, 1423–1425. DOI: 10.1039/C39900001423. http://dx.doi.org/10.1039/c3990000142310.1039/c39900001423Suche in Google Scholar

[44] Van Lier, G., Fowler, P. W., De Proft, F., & Geerlings, P. (2002). A pentagon-proximity model for local aromaticity in fullerenes and nanotubes. The Journal of Physical Chemistry A, 106, 5128–5135. DOI: 10.1021/jp013642x. http://dx.doi.org/10.1021/jp013642x10.1021/jp013642xSuche in Google Scholar

[45] von Ragué Schleyer, P., Maerker, C., Dransfeld, A., Jiao, H., & van Eikema Hommes, N. J. R. (1996). Nucleus-independent chemical shifts: a simple and efficient aromaticity probe. Journal of the American Chemical Society, 118, 6317–6318. DOI: 10.1021/ja960582d. http://dx.doi.org/10.1021/ja960582d10.1021/ja960582dSuche in Google Scholar PubMed

[46] Wang, Z., & Wu, S. (2007). Binding affinities and spectra of complexes formed by dehydrotetrapyrido[20]annulene and small molecules. Chemical Papers, 61, 313–320. DOI: 10.2478/s11696-007-0039-y. http://dx.doi.org/10.2478/s11696-007-0039-y10.2478/s11696-007-0039-ySuche in Google Scholar

[47] Wolinski, K., Hinton, J. F., & Pulay, P. (1990). Efficient implementation of the gauge-independent atomic orbital method for NMR chemical shift calculations. Journal of the American Chemical Society, 112, 8251–8260. DOI: 10.1021/ja00179a005. http://dx.doi.org/10.1021/ja00179a00510.1021/ja00179a005Suche in Google Scholar

[48] Yu, X., Yi, B., Yu, W., & Wang, X. (2008). DFT-based quantum theory QSPR studies of molar heat capacity and molar polarization of vinyl polymers. Chemical Papers, 62, 623–629. DOI: 10.2478/s11696-008-0066-3. http://dx.doi.org/10.2478/s11696-008-0066-310.2478/s11696-008-0066-3Suche in Google Scholar

[49] Yu, X., Yu, W., Yi, B., & Wang, X. (2009). Artificial neural network prediction of steric hindrance parameter of polymers. Chemical Papers, 63, 432–437. DOI: 10.2478/s11696-009-0036-4. http://dx.doi.org/10.2478/s11696-009-0036-410.2478/s11696-009-0036-4Suche in Google Scholar

[50] Zhang, W., Wang, Y., Zhang, H., & Wu, S. (2010). DFT study on stability and spectroscopy of C84O2 based on C84 (D 2). Journal of Molecular Structure: THEOCHEM, 941, 61–65. DOI: 10.1016/j.theochem.2009.11.002. http://dx.doi.org/10.1016/j.theochem.2009.11.00210.1016/j.theochem.2009.11.002Suche in Google Scholar

[51] Zhang, Y., Li, T., & Teng, Q.-W. (2008). Stabilities and spectroscopy of hydrogen bonding complexes formed by 2,4-bis(acrylamido)pyrimidines. Chinese Journal of Chemistry, 26, 1567–1572. DOI: 10.1002/cjoc.200890283. http://dx.doi.org/10.1002/cjoc.20089028310.1002/cjoc.200890283Suche in Google Scholar

[52] Zhao, H., Zhou, J., Hu, L., & Teng, Q. (2009). Theoretical studies on electronic structures and NMR spectra of oligo(4-vinylpyridine). Chinese Journal of Chemistry, 27, 1687–1691. DOI: 10.1002/cjoc.200990283. http://dx.doi.org/10.1002/cjoc.20099028310.1002/cjoc.200990283Suche in Google Scholar

[53] Zhu, Z., Wu, S., & Zhang, Y. (2008). The electronic structures and spectra of conducting pentacene derivatives. Russian Journal of Physical Chemistry A, 82, 2293–2298. DOI: 10.1134/S0036024408130220. http://dx.doi.org/10.1134/S003602440813022010.1134/S0036024408130220Suche in Google Scholar

Published Online: 2011-3-16
Published in Print: 2011-6-1

© 2011 Institute of Chemistry, Slovak Academy of Sciences

Artikel in diesem Heft

  1. Steam-reforming of ethanol for hydrogen production
  2. Polymeric ionic liquid as a background electrolyte modifier enhancing the separation of inorganic anions by capillary electrophoresis
  3. Enantioselective extraction of terbutaline enantiomers with β-cyclodextrin derivatives as hydrophilic selectors
  4. Effective photocatalytic degradation of an azo dye over nanosized Ag/AgBr-modified TiO2 loaded on zeolite
  5. Photocatalytically-assisted electrochemical degradation of p-aminophenol in aqueous solutions using zeolite-supported TiO2 catalyst
  6. Spectroscopic investigations and physico-chemical characterization of newly synthesized mixed-ligand complexes of 2-methylbenzimidazole with metal ions
  7. Synthesis, molecular characterisation, and in vivo study of platinum(IV) coordination compounds against B16 mouse melanoma tumours
  8. Swelling properties of particles in amphoteric polyacrylamide dispersion
  9. Electronic structures and spectroscopic regularities of phenylene-modified SWCNTs
  10. An expeditious, environment-friendly, and microwave-assisted synthesis of 5-isatinylidenerhodanine derivatives
  11. Pd-catalysed conjugate addition of arylboronic acids to α,β-unsaturated ketones under microwave irradiation
  12. Regioselective N-alkylation of (2-chloroquinolin-3-yl) methanol with N-heterocyclic compounds using the Mitsunobu reagent
  13. Antimycobacterial 3-phenyl-4-thioxo-2H-1,3-benzoxazine-2(3H)-ones and 3-phenyl-2H-1,3-benzoxazine-2,4(3H)-dithiones substituted on phenyl and benzoxazine moiety in position 6
  14. Polar constituents of Ligustrum vulgare L. and their effect on lipoxygenase activity
  15. Solubility of methane in pure non-ionic surfactants and pure and mixtures of linear alcohols at 298 K and 101.3 kPa
  16. Theoretical studies on polynitrobicyclo[1.1.1]pentanes in search of novel high energy density materials
  17. Insight into the degradation of a manganese(III)-citrate complex in aqueous solutions
Heruntergeladen am 27.11.2025 von https://www.degruyterbrill.com/document/doi/10.2478/s11696-011-0017-2/html?lang=de
Button zum nach oben scrollen