Startseite Pd-catalysed conjugate addition of arylboronic acids to α,β-unsaturated ketones under microwave irradiation
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Pd-catalysed conjugate addition of arylboronic acids to α,β-unsaturated ketones under microwave irradiation

  • Viera Poláčková EMAIL logo , Vladimír Bariak , Radovan Šebesta und Štefan Toma
Veröffentlicht/Copyright: 16. März 2011
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The Pd-catalysed conjugate addition of arylboronic acids to α,β-unsaturated cyclic ketones was studied under controlled microwave irradiation conditions. A variety of catalysts, bases and solvents was explored in order to achieve optimum yields in the shortest possible reaction time. Under optimised conditions (Pd(OAc)2/2,2′-bipyridine and KF in a mixture of toluene, water, and acetic acid and 10 min microwave irradiation), a range of arylboronic acids was successfully added to several cyclic enones. With chiral phosphane ligands, a promising enantioselectivity was obtained (85 % ee).

[1] Almansa, R., Guijarro, D., & Yus, M. (2008). Microwaveaccelerated enantioselective addition of dialkylzinc reagents to N-(diphenylphosphinoyl)imines catalysed by β-aminoalcohols with the prolinol skeleton. Tetrahedron: Asymmetry, 19, 1376–1380. DOI: 10.1016/j.tetasy.2008.05.005. http://dx.doi.org/10.1016/j.tetasy.2008.05.00510.1016/j.tetasy.2008.05.005Suche in Google Scholar

[2] Almássy, A., Barta, K., Franciò, G., Šebesta, R., Leitner, W., & Toma, Š. (2007). [5]Ferrocenophane based ligands for stereoselective Rh-catalyzed hydrogenation and Cu-catalyzed Michael addition. Tetrahedron: Asymmetry, 18, 1893–1898. DOI: 10.1016/j.tetasy.2007.08.011. http://dx.doi.org/10.1016/j.tetasy.2007.08.01110.1016/j.tetasy.2007.08.011Suche in Google Scholar

[3] Alonso, F., Beletskaya, I. P., & Yus, M. (2008). Non-conventional methodologies for transition-metal catalysed carbon-carbon coupling: a critical overview. Part 2: The Suzuki reaction. Tetrahedron, 64, 3047–3101. DOI: 10.1016/j.tet.2007.12.036. http://dx.doi.org/10.1016/j.tet.2007.12.03610.1016/j.tet.2007.12.036Suche in Google Scholar

[4] Arnold, L. A., Imbos, R., Mandoli, A., de Vries, A. H. M., Naasz, R., & Feringa, B. L. (2000). Enantioselective catalytic conjugate addition of dialkylzinc reagents using copper-phosphoramidite complexes; ligand variation and non-linear effects. Tetrahedron, 56, 2865–2878. DOI: 10.1016/s0040-4020(00)00142-3. http://dx.doi.org/10.1016/S0040-4020(00)00142-310.1016/S0040-4020(00)00142-3Suche in Google Scholar

[5] Barge, A., Tagliapietra, S., Tei, L., Cintas, P., & Cravotto, G. (2008). Pd-catalyzed reactions promoted by ultrasound and/or microwave irradiation. Current Organic Chemistry, 12, 1588–1612. DOI: 10.2174/138527208786786327. http://dx.doi.org/10.2174/13852720878678632710.2174/138527208786786327Suche in Google Scholar

[6] Bedford, R. B., Betham, M., Charmant, J. P. H., Haddow, M. F., Orpen, A. G., Pilarski, L. T., Coles, S. J., & Hursthouse, M. B. (2007). Simple palladacyclic and platinacyclic catalysts for the 1,4-conjugate addition of arylboronic acids and arylsiloxanes to enones. Organometallics, 26, 6346–6353. DOI: 10.1021/om700724c. http://dx.doi.org/10.1021/om700724c10.1021/om700724cSuche in Google Scholar

[7] Cammidge, A. N., & Crépy, K. V. L. (2004). Synthesis of chiral binaphthalenes using the asymmetric Suzuki reaction. Tetrahedron, 60, 4377–4386. DOI: 10.1016/j.tet.2003.11.095. http://dx.doi.org/10.1016/j.tet.2003.11.09510.1016/j.tet.2003.11.095Suche in Google Scholar

[8] Cho, C. S., Motofusa, S.-i., Ohe, K., Uemura, S., & Shim, S. C. (1995). A new catalytic activity of antimony(III) chloride in palladium(0)-catalyzed conjugate addition of aromatics to α,β-unsaturated ketones and aldehydes with sodium tetraphenylborate and arylboronic acids. The Journal of Organic Chemistry, 60, 883–888. DOI: 10.1021/jo00109a019. http://dx.doi.org/10.1021/jo00109a01910.1021/jo00109a019Suche in Google Scholar

[9] Comins, D. L., Brooks, C. A., & Ingalls, C. L. (2001). Reduction of N-acyl-2,3-dihydro-4-pyridones to N-acyl-4-piperidones using zinc/acetic acid. The Journal Organic Chemistry, 66, 2181–2182. DOI: 10.1021/jo001609l. http://dx.doi.org/10.1021/jo001609l10.1021/jo001609lSuche in Google Scholar PubMed

[10] Fujio, M., Tanaka, M., Wu, X.-M., Funakoshi, K., Sakai, K., & Suemune, H. (1998). ortho-Halogeno substituents effect in asymmetric cyclization of 4-aryl-4-pentenals using a rhodium catalyst. Chemistry Letters, 27, 881–882. DOI: 10.1246/cl.1998.881. http://dx.doi.org/10.1246/cl.1998.88110.1246/cl.1998.881Suche in Google Scholar

[11] Gavande, N., Johnston, G. A. R., Hanrahan, J. R., & Chebib, M. (2010). Microwave-enhanced synthesis of 2,3,6-trisubstituted pyridazines: application to four-step synthesis of gabazine (SR-95531). Organic and Biomolecular Chemistry, 8, 4131–4136. DOI: 10.1039/C0OB00004C. http://dx.doi.org/10.1039/c0ob00004c10.1039/c0ob00004cSuche in Google Scholar PubMed

[12] Genov, M., Almorín, A., & Espinet, P. (2007). Microwave assisted asymmetric Suzuki-Miyaura and Negishi crosscoupling reactions: synthesis of chiral binaphthalenes. Tetrahedron: Asymmetry, 18, 625–627. DOI: 10.1016/j.tetasy.2007.03.001. http://dx.doi.org/10.1016/j.tetasy.2007.03.00110.1016/j.tetasy.2007.03.001Suche in Google Scholar

[13] Genov, M., Almorín, A., & Espinet, P. (2006). Efficient synthesis of chiral 1,1′-binaphthalenes by the asymmetric Suzuki-Miyaura reaction: Dramatic synthetic improvement by simple purification of naphthylboronic acids. Chemistry — A European Journal, 12, 9346–9352. DOI: 10.1002/chem.200600616. http://dx.doi.org/10.1002/chem.20060061610.1002/chem.200600616Suche in Google Scholar PubMed

[14] Genov, M., Salas, G., & Espinet, P. (2008). Effect of microwave heating in the asymmetric addition of dimethylzinc to aldehydes. Journal of Organometallic Chemistry, 693, 2017–2020. DOI: 10.1016/j.jorganchem.2008.03.003. http://dx.doi.org/10.1016/j.jorganchem.2008.03.00310.1016/j.jorganchem.2008.03.003Suche in Google Scholar

[15] Gini, F., Hessen, B., & Minnaard, A. J. (2005). Palladiumcatalyzed enantioselective conjugate addition of arylboronic acids. Organic Letters, 7, 5309–5312. DOI: 10.1021/ol05222 2d. http://dx.doi.org/10.1021/ol052222dSuche in Google Scholar

[16] Gutnov, A. (2008). Palladium-catalyzed asymmetric conjugate addition of aryl-metal species. European Journal of Organic Chemistry, 2008, 4547–4554. DOI: 10.1002/ejoc.200800541. http://dx.doi.org/10.1002/ejoc.20080054110.1002/ejoc.200800541Suche in Google Scholar

[17] Gutsche, C. D., Strohmayer, H. F., & Chang, J. M. (1958). Ring enlargements VI. The diazomethane-carbonyl reaction: Product ratios from the reactions of diazomethane with various substituted 2-phenylcyclohexanons. The Journal Organic Chemistry, 23, 1–5. DOI: 10.1021/jo01095a001. http://dx.doi.org/10.1021/jo01095a00110.1021/jo01095a001Suche in Google Scholar

[18] Hayashi, T., Mise, T., Fukushima, M., Kagotani, M., Nagashima, N., Hamada, Y., Matsumoto, A., Kawakami, S., Konishi, M., Yamamoto, K., & Kumada, M. (1980). Asymmetric synthesis catalyzed by chiral ferrocenylphosphine-transition metal complexes. I. Preparation of chiral ferrocenylphosphines. Bulletin of the Chemical Society of Japan, 53, 1138–1151. DOI: 10.1246/bcsj.53.1138. http://dx.doi.org/10.1246/bcsj.53.113810.1246/bcsj.53.1138Suche in Google Scholar

[19] He, P., Lu, Y., Dong, C.-G., & Hu, Q.-S. (2007). Anionic fourelectron donor-based palladacycles as catalysts for addition reactions of arylboronic acids with α,β-unsaturated ketones, aldehydes, and α-ketoesters. Organic Letters, 9, 343–346. DOI: 10.1021/ol062814b. http://dx.doi.org/10.1021/ol062814b10.1021/ol062814bSuche in Google Scholar PubMed PubMed Central

[20] Helan, V., Mills, A., Drewry, D., & Grant, D. (2010). A rapid three-component MgI2-mediated synthesis of 3,3-pyrollidinyl spirooxindoles. The Journal of Organic Chemistry, 75, 6693–6695. DOI: 10.1021/jo101077g. http://dx.doi.org/10.1021/jo101077g10.1021/jo101077gSuche in Google Scholar PubMed

[21] Itooka, R., Iguchi, Y., & Miyaura, N. (2003). Rhodiumcatalyzed 1,4-addition of arylboronic acids to α,β-unsaturated carbonyl compounds: Large accelerating effects of bases and ligands. The Journal of Organic Chemistry, 68, 6000–6004. DOI: 10.1021/jo0207067. http://dx.doi.org/10.1021/jo020706710.1021/jo0207067Suche in Google Scholar PubMed

[22] Kantam, M. L., Subrahmanyam, V. B., Kumar, K. B. S., Venkanna, G. T., & Sreedhar, B. (2008). Rhodium fluoroapatite catalyzed conjugate addition of arylboronic acids to α,β-unsaturated carbonyl compounds. Helvetica Chimica Acta, 91, 1947–1953. DOI: 10.1002/hlca.200890208. http://dx.doi.org/10.1002/hlca.20089020810.1002/hlca.200890208Suche in Google Scholar

[23] Kappe, C. O. (2004). Controlled microwave heating in modern organic synthesis. Angewandte Chemie International Edition, 43, 6250–6284. DOI: 10.1002/anie.200400655. http://dx.doi.org/10.1002/anie.20040065510.1002/anie.200400655Suche in Google Scholar PubMed

[24] Kappe, C. O., & Dallinger, D. (2009). Controlled microwave heating in modern organic synthesis: highlights from the 2004-2008 literature. Molecular Diversity, 13, 71–193. DOI: 10.1007/s11030-009-9138-8. http://dx.doi.org/10.1007/s11030-009-9138-810.1007/s11030-009-9138-8Suche in Google Scholar PubMed

[25] Kappe, C. O., Dallinger, D., & Murphree, S. S. (2009). Practical microwave synthesis for organic chemists: Strategies, instruments, and protocols. Weinheim, Germany: Wiley-VCH. Suche in Google Scholar

[26] Kappe, C. O., & Stadler, A. (2005). Microwaves in organic and medicinal chemistry (Series: Methods and principles in medicinal chemistry, Vol. 25). Weinheim, Germany: Wiley-VCH. 10.1002/3527606556Suche in Google Scholar

[27] Kováčová, S., Kováčiková, L., Lácová, M., Boháč, A., & Sališová, M. (2010). Microwave assisted one pot synthesis of 7-substituted 2-(2-oxo-2H-chromen-3-yl)acetic acids as precursors of new anti-tumour compounds. Chemical Papers, 64, 806–811. DOI: 10.2478/s11696-010-0059-x. http://dx.doi.org/10.2478/s11696-010-0059-x10.2478/s11696-010-0059-xSuche in Google Scholar

[28] Larhed, M., Moberg, C., & Hallberg, A. (2002). Microwaveaccelerated homogeneous catalysis in organic chemistry. Accounts of Chemical Research, 35, 717–727. DOI: 10.1021/ar010074v. http://dx.doi.org/10.1021/ar010074v10.1021/ar010074vSuche in Google Scholar PubMed

[29] Lin, S., & Lu, X. (2006). Palladium-bipyridine catalyzed conjugate addition of arylboronic acids to α,β-unsaturated carbonyl compounds in aqueous media. Tetrahedron Letters, 47, 7167–7170. DOI: 10.1016/j.tetlet.2006.07.154. http://dx.doi.org/10.1016/j.tetlet.2006.07.15410.1016/j.tetlet.2006.07.154Suche in Google Scholar

[30] Lu, X., & Lin, S. (2005). Pd(II)-bipyridine catalyzed conjugate addition of arylboronic acid to α,β-unsaturated carbonyl compounds. The Journal of Organic Chemistry, 70, 9651–9653. DOI: 10.1021/jo051561h. http://dx.doi.org/10.1021/jo051561h10.1021/jo051561hSuche in Google Scholar PubMed

[31] Mariz, R., Luan, X., Gatti, M., Linden, A., & Dorta, R. (2008). A chiral bis-sulfoxide ligand in late-transition metal catalysis; rhodium-catalyzed asymmetric addition of arylboronic acids to electron-deficient olefins. Journal of the American Chemical Society, 130, 2172–2173. DOI: 10.1021/ja710665q. http://dx.doi.org/10.1021/ja710665q10.1021/ja710665qSuche in Google Scholar PubMed

[32] Nishikata, T., Yamamoto, Y., & Miyaura, N. (2004). 1,4-Addition of arylboronic acids and arylsiloxanes to α,β-unsaturated carbonyl compounds via transmetalation to dicationic palladium(II) complexes. Organometallics, 23, 4317–4324. DOI: 10.1021/om0498044. http://dx.doi.org/10.1021/om049804410.1021/om0498044Suche in Google Scholar

[33] Poláčková, V., & Toma, Š. (2007). Effect of microwave irradiation on the reactivity of chloroarenes in Suzuki—Miyaura reaction. Chemical Papers, 61, 41–45. DOI: 10.2478/s11696-006-0093-x. http://dx.doi.org/10.2478/s11696-006-0093-x10.2478/s11696-006-0093-xSuche in Google Scholar

[34] Poláčková, V., Toma, Š., & Augustínová, I. (2006). Microwavepromoted cross-coupling of acid chlorides with arylboronic acids: a convenient method for preparing aromatic ketones. Tetrahedron, 62, 11675–11678. DOI: 10.1016/j.tet.2006.09.055. http://dx.doi.org/10.1016/j.tet.2006.09.05510.1016/j.tet.2006.09.055Suche in Google Scholar

[35] Poláčková, V., Toma, Š., & Kappe, C. O. (2007). Microwaveassisted arylation of rac-(E)-3-acetoxy-1,3-diphenylprop-1-ene with arylboronic acids. Tetrahedron, 63, 8742–8745. DOI: 10.1016/j.tet.2007.06.045. http://dx.doi.org/10.1016/j.tet.2007.06.04510.1016/j.tet.2007.06.045Suche in Google Scholar

[36] Shintani, R., Duan, W.-L., Nagano, T., Okada, A., & Hayashi, T. (2005). Chiral phosphine-olefin bidentate ligands in asymmetric catalysis: Rhodium-catalyzed asymmetric 1,4-addition of aryl boronic acids to maleimides. Angewandte Chemie International Edition, 44, 4611–4614. DOI: 10.1002/anie.200501305. http://dx.doi.org/10.1002/anie.20050130510.1002/anie.200501305Suche in Google Scholar

[37] Singh, B. K., Kaval, N., Tomar, S., van der Eycken, E., & Parmar, V. S. (2008). Transition metal-catalyzed carbon-carbon bond formation Suzuki, Heck, and Sonogashira reactions using microwave and microtechnology. Organic Process Research & Development, 12, 468–474. DOI: 10.1021/op800047f. http://dx.doi.org/10.1021/op800047f10.1021/op800047fSuche in Google Scholar

[38] Suzuma, Y., Yamamoto, T., Ohta, T., & Ito, Y. (2007). Asymmetric 1,4-addition reaction of arylboronic acid to enone catalyzed by palladium with ferrocene-based phosphine ligand. Chemistry Letters, 36, 470–471. DOI: 10.1246/cl.2007.470. http://dx.doi.org/10.1246/cl.2007.47010.1246/cl.2007.470Suche in Google Scholar

[39] Takaya, Y., Ogasawara, M., & Hayashi, T. (1999). Rhodiumcatalyzed asymmetric 1,4-addition of arylboron compounds generated in situ from aryl bromides. Tetrahedron Letters, 40, 6957–6961. DOI: 10.1016/s0040-4039(99)01412-4. http://dx.doi.org/10.1016/S0040-4039(99)01412-410.1016/S0040-4039(99)01412-4Suche in Google Scholar

[40] Takaya, Y., Ogasawara, M., Hayashi, T., Sakai, M., & Miyaura, N. (1998). Rhodium-catalyzed asymmetric 1,4-addition of aryl- and alkenylboronic acids to enones. Journal of the American Chemical Society, 120, 5579–5580. DOI: 10.1021/ja980666h. http://dx.doi.org/10.1021/ja980666h10.1021/ja980666hSuche in Google Scholar

[41] Tierney, J. P., & Lidström, P. (Eds.) (2005). Microwave assisted organic synthesis. Oxford, UK: Wiley-Blackwell. 10.1002/9781444305548Suche in Google Scholar

[42] Togni, A., Breutel, C., Schnyder, A., Spindler, F., Landert, H., & Tijani, A. (1994). A novel easily accessible chiral ferrocenyldiphosphine for highly enantioselective hydrogenation, allylic alkylation, and hydroboration reactions. Journal of the American Chemical Society, 116, 4062–4066. DOI: 10.1021/ja00088a047. http://dx.doi.org/10.1021/ja00088a04710.1021/ja00088a047Suche in Google Scholar

[43] Vandyck, K., Matthys, B., Willen, M., Robeyns, K., Van Meervelt, L., & Van der Eycken, J. (2006). Rhodiumcatalyzed asymmetric conjugate additions of boronic acids to enones using DIPHONANE: A novel chiral bisphosphine ligand. Organic Letters, 8, 363–366. DOI: 10.1021/ol0522788. http://dx.doi.org/10.1021/ol052278810.1021/ol0522788Suche in Google Scholar PubMed

[44] Veverková, E., & Toma, Š. (2008). Study of CuI catalyzed coupling reactions of aryl bromides with imidazole and aliphatic amines under microwave dielectric heating. Chemical Papers, 62, 334–338. DOI: 10.2478/s11696-008-0033-z. http://dx.doi.org/10.2478/s11696-008-0033-z10.2478/s11696-008-0033-zSuche in Google Scholar

[45] Xu, Q., Zhang, R., Zhang, T., & Shi, M. (2010). Asymmetric 1,4-addition of arylboronic acids to 2,3-dihydro-4-pyridones catalyzed by axially chiral NHC-Pd(II) complexes. The Journal of Organic Chemistry, 75, 3935–3937. DOI: 10.1021/jo1006224. http://dx.doi.org/10.1021/jo100622410.1021/jo1006224Suche in Google Scholar PubMed

[46] Yamamoto, T., Iizuka, M., Ohta, T., & Ito, Y. (2006). Palladium catalyzed conjugate 1,4-addition of organoboronic acids to α,β-unsaturated ketones. Chemistry Letters, 35, 198–199. DOI: 10.1246/cl.2006.198. http://dx.doi.org/10.1246/cl.2006.19810.1246/cl.2006.198Suche in Google Scholar

Published Online: 2011-3-16
Published in Print: 2011-6-1

© 2011 Institute of Chemistry, Slovak Academy of Sciences

Artikel in diesem Heft

  1. Steam-reforming of ethanol for hydrogen production
  2. Polymeric ionic liquid as a background electrolyte modifier enhancing the separation of inorganic anions by capillary electrophoresis
  3. Enantioselective extraction of terbutaline enantiomers with β-cyclodextrin derivatives as hydrophilic selectors
  4. Effective photocatalytic degradation of an azo dye over nanosized Ag/AgBr-modified TiO2 loaded on zeolite
  5. Photocatalytically-assisted electrochemical degradation of p-aminophenol in aqueous solutions using zeolite-supported TiO2 catalyst
  6. Spectroscopic investigations and physico-chemical characterization of newly synthesized mixed-ligand complexes of 2-methylbenzimidazole with metal ions
  7. Synthesis, molecular characterisation, and in vivo study of platinum(IV) coordination compounds against B16 mouse melanoma tumours
  8. Swelling properties of particles in amphoteric polyacrylamide dispersion
  9. Electronic structures and spectroscopic regularities of phenylene-modified SWCNTs
  10. An expeditious, environment-friendly, and microwave-assisted synthesis of 5-isatinylidenerhodanine derivatives
  11. Pd-catalysed conjugate addition of arylboronic acids to α,β-unsaturated ketones under microwave irradiation
  12. Regioselective N-alkylation of (2-chloroquinolin-3-yl) methanol with N-heterocyclic compounds using the Mitsunobu reagent
  13. Antimycobacterial 3-phenyl-4-thioxo-2H-1,3-benzoxazine-2(3H)-ones and 3-phenyl-2H-1,3-benzoxazine-2,4(3H)-dithiones substituted on phenyl and benzoxazine moiety in position 6
  14. Polar constituents of Ligustrum vulgare L. and their effect on lipoxygenase activity
  15. Solubility of methane in pure non-ionic surfactants and pure and mixtures of linear alcohols at 298 K and 101.3 kPa
  16. Theoretical studies on polynitrobicyclo[1.1.1]pentanes in search of novel high energy density materials
  17. Insight into the degradation of a manganese(III)-citrate complex in aqueous solutions
Heruntergeladen am 27.11.2025 von https://www.degruyterbrill.com/document/doi/10.2478/s11696-011-0016-3/html?lang=de
Button zum nach oben scrollen