Startseite Polar constituents of Ligustrum vulgare L. and their effect on lipoxygenase activity
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Polar constituents of Ligustrum vulgare L. and their effect on lipoxygenase activity

  • Pavel Mučaji EMAIL logo , Milan Nagy , Anna Záhradníková , Ivana Holková , Lýdia Bezáková , Emil Švajdlenka , Tibor Liptaj und Nadežda Prónayová
Veröffentlicht/Copyright: 16. März 2011
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The present work summarizes results of isolation and identification of polar constituents of the methanolic extract of Ligustrum vulgare L. leaves and of the evaluation of inhibiting activity of selected isolates on rat lung cytosol fraction lipoxygenase. Six different compounds were isolated from the ethylacetate and butanol portions of the methanolic extract (hydroxytyrosol and its glucoside, ligustroflavon, oleuropein, acteoside, echinacoside). The inhibitory activity of oleuropein, echinacoside and the water infusion of Ligustrum vulgare leaves tested on LOX was expressed as IC50. Kinetic parameters (K M, V max) and type of inhibition were determined. As the most effective in competitive inhibition of LOX, oleuropein was proved.

[1] Bezáková, L., Grančai, D., Obložinská, I., Pauliková, I., Garaj, V., & Gáplovsky, M. (2007). Effect of flavonoids and cynarine from Cynara cardunculus L. on lipoxygenase activity. Acta Facultatis Pharmaceuticae Universitatis Comenianae, 54, 48–53. Suche in Google Scholar

[2] Bezáková, L., Misik, V., Máleková, L., Svajdlenka, E., & Kostálová, D. (1996). Lipoxygenase inhibition and antioxidant properties of bisbenzylisoquinoline alkaloids isolated from Mahonia aquifolium. Pharmazie, 51, 758–761. Suche in Google Scholar

[3] Bradford, M. M. (1976). Rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254. DOI: 10.1016/0003-2697(76)90527-3. http://dx.doi.org/10.1016/0003-2697(76)90527-310.1016/0003-2697(76)90527-3Suche in Google Scholar

[4] de la Puerta, R., Ruiz Gutierrez, V., & Hoult, J. R. S. (1999). Inhibition of leukocyte 5- lipoxygenase by phenolics from virgin olive oil. Biochemical Pharmacology, 57, 445–449. DOI: 10.1016/S0006-2952(98)00320-7. http://dx.doi.org/10.1016/S0006-2952(98)00320-710.1016/S0006-2952(98)00320-7Suche in Google Scholar

[5] Franzyk, H., Olsen, C. E., & Jansen, S. R. (2004). Dopaol 2-keto- and 2,3-diketoglycosides from Chelone obliqua. Journal of Natural Products, 67, 1052–1054. DOI: 10.1021/np0499416. http://dx.doi.org/10.1021/np049941610.1021/np0499416Suche in Google Scholar

[6] Hammermann, A. F., Damirov, J. A., & Sokolov, W. S. (1971). Einige aussichtsreiche Pflanzen der Volksmedizin von Azerbajdschan. Planta Medica, 20, 374–380. DOI: 10.1055/s-0028-1099719. http://dx.doi.org/10.1055/s-0028-109971910.1055/s-0028-1099719Suche in Google Scholar

[7] Hromádková, Z., Hirsch, J., & Ebringerová, A. (2010). Chemical evaluation of Fallopia species leaves and antioxidant properties of their non-cellulosic polysaccharides. Chemical Papers, 64, 663–672. DOI: 10.2478/s11696-010-0054-2. http://dx.doi.org/10.2478/s11696-010-0054-210.2478/s11696-010-0054-2Suche in Google Scholar

[8] Jiménez, J. T., O’Connell, S., Lyons, H., Bradley, B., & Hall, M. (2010). Antioxidant, antimicrobial, and tyrosinase inhibition activities of acetone extract of Ascophyllum nodosum. Chemical Papers, 64, 434–442. DOI: 10.2478/s11696-010-0024-8. http://dx.doi.org/10.2478/s11696-010-0024-810.2478/s11696-010-0024-8Suche in Google Scholar

[9] Kemal, C., Louis-Flamberg, P., Krupinski-Olsen, R., & Shorter, A. L. (1987). Reductive inactivation of soybean lipoxygenase 1 by catechols: a possible mechanism for regulation of lipoxygenase activity. Biochemistry, 26, 7064–7072. DOI: 10.1021/bi00396a031. http://dx.doi.org/10.1021/bi00396a03110.1021/bi00396a031Suche in Google Scholar

[10] Kiss, A. K., Mańk, M., & Melzig, M. F. (2008). Dual inhibition of metallopeptidases ACE and NEP by extracts, and iridoids from Ligustrum vulgare L. Journal of Ethnopharmacology, 120, 220–225. DOI: 10.1016/j.jep.2008.08.015. http://dx.doi.org/10.1016/j.jep.2008.08.01510.1016/j.jep.2008.08.015Suche in Google Scholar

[11] Kulkarni, A. P., Cai, Y., & Richards, I. S. (1992). Rat pulmonary lipoxygenase: dioxygenase activity and role of xenobiotic metabolism. International Journal of Biochemistry, 24, 255–261. DOI: 10.1016/0020-711X(92)90255-Y. http://dx.doi.org/10.1016/0020-711X(92)90255-Y10.1016/0020-711X(92)90255-YSuche in Google Scholar

[12] Ma, S.-C., He, Z.-D., Deng, X.-L., But, P. P.-H., Ooi, V. E.-C., Xu, H.-X., Lee, S. H.-S., & Lee, S.-F. (2001). In vitro evaluation of secoiridoid glucosides from the fruits of Ligustrum lucidum as antiviral agents. Chemical & Pharmaceutical Bulletin, 49, 1471–1473. DOI: 10.1248/cpb.49.1471. http://dx.doi.org/10.1248/cpb.49.147110.1248/cpb.49.1471Suche in Google Scholar PubMed

[13] Mabry, T. J., Markham, K. R., & Thomas, M. B. (1970). The systematic identification of flavonoids. New York, NY, USA: Springer-Verlag. 10.1007/978-3-642-88458-0Suche in Google Scholar

[14] Mučaji, P., Nagy, M., Grančai, D., & Švajdlenka, E. (2006). Flavonoidné glykozidy Ligustrum vulgare L. Farmaceutický Obzor, 75(10–11), 266–271. Suche in Google Scholar

[15] Nagao, T., Abe, F., & Okabe, H. (2001). Antiproliferative constituents in the plants 7. leaves of Clerodendron bungei and leaves and bark of C. trichotomum. Biological & Pharmaceutical Bulletin, 24, 1338–1342. DOI: 10.1248/bpb.24.1338. http://dx.doi.org/10.1248/bpb.24.133810.1248/bpb.24.1338Suche in Google Scholar

[16] Nagy, M., Križkovčaji, P., Kontšeková, Z., Šeršeň, F., & Krajčovič, J. (2009). Antimutagenic activity and radical scavenging activity of water infusions and phenolics from Ligustrum plants leaves. Molecules, 14, 509–518. DOI: 10.3390/molecules14010509. http://dx.doi.org/10.3390/molecules1401050910.3390/molecules14010509Suche in Google Scholar

[17] Nagy, M., Spilková, J., Vrchovská, V., Kontšeková, Z., Šeršeň, F., Mučaji, P., & Grančai, D. (2006). Free radical scavenging activity of different extracts and some constituents from the leaves of Ligustrum vulgare and L. delavayanum. Fitoterapia, 77, 395–397. DOI: 10.1016/j.fitote.2006.04.010. http://dx.doi.org/10.1016/j.fitote.2006.04.01010.1016/j.fitote.2006.04.010Suche in Google Scholar

[18] Pan, L. T., He, X. P., & Yanag, L. Y. (2002). Studies on chemical constituents in the leaf of Ligustrum delavayanum. Zhongguo Zhong Yao Za Zhi, 27, 754–756. Suche in Google Scholar

[19] Pieroni, A., & Pachaly, P. (2000a). An ethnopharmacological study on common privet (Ligustrum vulgare) and phillyrea (Phillyrea latifolia). Fitoterapia, 71,Supplement 1, S89–S94. DOI: 10.1016/S0367-326X(00)00182-9. http://dx.doi.org/10.1016/S0367-326X(00)00182-910.1016/S0367-326X(00)00182-9Suche in Google Scholar

[20] Pieroni, A., & Pachaly, P. (2000b). Isolation and structure elucidation of ligustroflavone, a new apigenin triglycoside from the leaves Ligustrum vulgare L. Pharmazie, 55, 78–80. Suche in Google Scholar

[21] Scogin, R. (1992). The distribution of acteoside among angiosperms. Biochemical Systematics and Ecology, 20, 477–480. DOI: 10.1016/0305-1978(92)90090-Z. http://dx.doi.org/10.1016/0305-1978(92)90090-Z10.1016/0305-1978(92)90090-ZSuche in Google Scholar

[22] Shoemaker, M., Hamilton, B., Dairkee, S. H., Cohen, I., & Campbell, M. J. (2005). In vitro anticancer activity of twelve Chinese medicinal herbs. Phytotherapy Research, 19, 649–651. DOI: 10.1002/ptr.1702. http://dx.doi.org/10.1002/ptr.170210.1002/ptr.1702Suche in Google Scholar PubMed

[23] Stojanović-Radić, Z., Comić, L., Radulović, N., Dekić, M., Randelović, V., & Stefanović, O. (2010). Chemical composition and antimicrobial activity of Erodium species: E. ciconium L., E. cicutarium L., and E. absinthoides Willd. (Geraniaceae). Chemical Papers, 64, 368–377. 10.2478/s11696-010-0014-x. http://dx.doi.org/10.2478/s11696-010-0014-x10.2478/s11696-010-0014-xSuche in Google Scholar

[24] Šeršeň, F., Mučaji, P., Grančai, D., Nagy, M., & Švajdlenka, E. (2006). Constituents of butanol extract from leaves of Ligustrum vulgare L. Acta Facultatis Pharmaceuticae Universitatis Comenianae, 53, 253–261. Suche in Google Scholar

[25] Šmejkal, K., Babula, P., Šlapetová, T., Brognara, E., Dall’Acqua, S., Žemlička, M., Innocenti, G., & Cvačka, J. (2008). Cytotoxic activity of C-geranyl compounds from Paulownia tomentosa fruits. Planta Medica, 74, 1488–1491. DOI: 10.1055/s-2008-1081339. http://dx.doi.org/10.1055/s-2008-108133910.1055/s-2008-1081339Suche in Google Scholar PubMed

[26] Tattini, M., Galardi, C., Pinelli, P., Massai, R., Remorini, D., & Agati, G. (2004). Differential accumulation of flavonoids and hydroxycinnamates in leaves of Ligustrum vulgare under excess light and drought stress. New Phytologist, 163, 547–561. DOI: 10.1111/j.1469-8137.2004.01126.x. http://dx.doi.org/10.1111/j.1469-8137.2004.01126.x10.1111/j.1469-8137.2004.01126.xSuche in Google Scholar PubMed

[27] Wong, I. Y. F., He, Z.-D., Huang, Y., & Chen, Z.-Y. (2001). Antioxidative activities of phenylethanoid glycosides from Ligustrum purpurascens. Journal of Agricultural and Food Chemistry, 49, 3113–3119. DOI: 10.1021/jf0100604. http://dx.doi.org/10.1021/jf010060410.1021/jf0100604Suche in Google Scholar

[28] Yim, T. K., Wu, W. K., Pak, W. F., & Ko, K. M. (2001). Hepatoprotective action of an oleanolic acid-enriched extract of Ligustrum lucidum fruits is mediated through an enhancement on hepatic glutathione regeneration capacity in mice. Phytotherapy Research, 15, 589–592. DOI: 10.1002/ptr.878. http://dx.doi.org/10.1002/ptr.87810.1002/ptr.878Suche in Google Scholar

[29] Young, R. N. (1999). Inhibitors of 5-lipoxygenase: a therapeutic potential yet to be fully realized? European Journal of Medicinal Chemistry, 34, 671–685. DOI: 10.1016/S0223-5234(99)00225-1. http://dx.doi.org/10.1016/S0223-5234(99)00225-110.1016/S0223-5234(99)00225-1Suche in Google Scholar

Published Online: 2011-3-16
Published in Print: 2011-6-1

© 2011 Institute of Chemistry, Slovak Academy of Sciences

Artikel in diesem Heft

  1. Steam-reforming of ethanol for hydrogen production
  2. Polymeric ionic liquid as a background electrolyte modifier enhancing the separation of inorganic anions by capillary electrophoresis
  3. Enantioselective extraction of terbutaline enantiomers with β-cyclodextrin derivatives as hydrophilic selectors
  4. Effective photocatalytic degradation of an azo dye over nanosized Ag/AgBr-modified TiO2 loaded on zeolite
  5. Photocatalytically-assisted electrochemical degradation of p-aminophenol in aqueous solutions using zeolite-supported TiO2 catalyst
  6. Spectroscopic investigations and physico-chemical characterization of newly synthesized mixed-ligand complexes of 2-methylbenzimidazole with metal ions
  7. Synthesis, molecular characterisation, and in vivo study of platinum(IV) coordination compounds against B16 mouse melanoma tumours
  8. Swelling properties of particles in amphoteric polyacrylamide dispersion
  9. Electronic structures and spectroscopic regularities of phenylene-modified SWCNTs
  10. An expeditious, environment-friendly, and microwave-assisted synthesis of 5-isatinylidenerhodanine derivatives
  11. Pd-catalysed conjugate addition of arylboronic acids to α,β-unsaturated ketones under microwave irradiation
  12. Regioselective N-alkylation of (2-chloroquinolin-3-yl) methanol with N-heterocyclic compounds using the Mitsunobu reagent
  13. Antimycobacterial 3-phenyl-4-thioxo-2H-1,3-benzoxazine-2(3H)-ones and 3-phenyl-2H-1,3-benzoxazine-2,4(3H)-dithiones substituted on phenyl and benzoxazine moiety in position 6
  14. Polar constituents of Ligustrum vulgare L. and their effect on lipoxygenase activity
  15. Solubility of methane in pure non-ionic surfactants and pure and mixtures of linear alcohols at 298 K and 101.3 kPa
  16. Theoretical studies on polynitrobicyclo[1.1.1]pentanes in search of novel high energy density materials
  17. Insight into the degradation of a manganese(III)-citrate complex in aqueous solutions
Heruntergeladen am 27.11.2025 von https://www.degruyterbrill.com/document/doi/10.2478/s11696-011-0015-4/html?lang=de
Button zum nach oben scrollen