Startseite Polymeric ionic liquid as a background electrolyte modifier enhancing the separation of inorganic anions by capillary electrophoresis
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Polymeric ionic liquid as a background electrolyte modifier enhancing the separation of inorganic anions by capillary electrophoresis

  • Yabin Zhou EMAIL logo , Jing Li , Haifeng Han , Xia Liu und Shengxiang Jiang
Veröffentlicht/Copyright: 16. März 2011
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

A novel and easy method for the separation of inorganic anions by capillary electrophoresis using a polymeric ionic liquid (PIL), poly(1-vinyl-3-butylimidazolium bromide) as a background electrolyte modifier has been developed. The PIL has been proved to generate a reversed electroosmotic flow which reduces the analysis time and improves the separation significantly. Effects of the PIL concentration and buffer composition (pH and concentration) were evaluated on basis of the resolution and efficiency of the sample. Under optimum conditions, good separation of six model inorganic anions was achieved with high efficiency and excellent reproducibility within 3 min. The results obtained indicate that the combination of reversed EOF and the association between the analytes and the PIL on the capillary wall or BGE play a prominent role in the separation of anions. Therefore, the PIL presents a useful alternative for the BGE modifier in the study of inorganic anions by CE.

[1] Borissova, M., Vaher, M., Koel, M., & Kaljurand, M. (2007). Capillary zone electrophoresis on chemically bonded imidazolium based salts. Journal of Chromatography A, 1160, 320–325. DOI:10.1016/j.chroma.2007.04.032. http://dx.doi.org/10.1016/j.chroma.2007.04.03210.1016/j.chroma.2007.04.032Suche in Google Scholar

[2] Chen, S., & Pietrzyk, D. J. (1993). Separation of sulfonate and sulfate surfactants by capillary electrophoresis: effect of buffer cation. Analytical Chemistry, 65, 2770–2775. DOI:10.1021/ac00068a012. http://dx.doi.org/10.1021/ac00068a01210.1021/ac00068a012Suche in Google Scholar

[3] Hernández-Borges, J., Borges-Miquel, T., González-Hernández, G., & Rodríguez-Delgado, M. A. (2005). Rapid separation of antioxidants in food samples by coelectroosmotic CE. Chromatographia, 62, 271–276. DOI:10.1365/s10337-005-0622-8. http://dx.doi.org/10.1365/s10337-005-0622-810.1365/s10337-005-0622-8Suche in Google Scholar

[4] Hsieh, Y.-N., Ho, W.-Y., Horng, R. S., Huang, P.-C., Hsu, C.-Y., Huang, H.-H., & Kuei, C.-H. (2007). Study of anion effects on separation phenomenon for the vinyloctylimidazolium based ionic liquid polymer stationary phases in GC. Chromatographia, 66, 607–611. DOI:10.1365/s10337-007-0334-3. http://dx.doi.org/10.1365/s10337-007-0334-310.1365/s10337-007-0334-3Suche in Google Scholar

[5] Hsieh, Y.-N., Horng, R. S., Ho, W.-Y., Huang, P.-C., Hsu, C.- Y., Whang, T.-J., & Kuei, C.-H. (2008). Characterizations for vinylimidazolium based ionic liquid polymer stationary phases for capillary gas chromatography. Chromatographia, 67, 413–420. DOI:10.1365/s10337-008-0531-8. http://dx.doi.org/10.1365/s10337-008-0531-810.1365/s10337-008-0531-8Suche in Google Scholar

[6] Jones, W. R., & Jandik, P. (1992). Various approaches to analysis of difficult sample matrices of anions using capillary ion electrophoresis. Journal of Chromatography A, 608, 385–393. DOI:10.1016/0021-9673(92)87146-Y. http://dx.doi.org/10.1016/0021-9673(92)87146-Y10.1016/0021-9673(92)87146-YSuche in Google Scholar

[7] Křížek, T., Breitbach, Z. S., Armstrong, D. W., Tesařová, E., & Coufal, P. (2009). Separation of inorganic and small organic anions by CE using phosphonium-based mono- and dicationic reagents. Electrophoresis, 30, 3955–3963. DOI:10.1002/elps.200900416. http://dx.doi.org/10.1002/elps.20090041610.1002/elps.200900416Suche in Google Scholar PubMed

[8] Li, J., Han, H., Wang, Q., Liu, X., & Jiang, S. (2010b). Polymeric ionic liquid as a dynamic coating additive for separation of basic proteins by capillary electrophoresis. Analytica Chimica Acta, 674, 243–248. DOI:10.1016/j.aca.2010.06.044. http://dx.doi.org/10.1016/j.aca.2010.06.04410.1016/j.aca.2010.06.044Suche in Google Scholar PubMed

[9] Li, J., Wang, Q., Han, H., Liu, X., & Jiang, S. (2010a). Polymeric ionic liquid as additive for the high speed and efficient separation of aromatic acids by co-electroosmotic capillary electrophoresis. Talanta, 82, 56–60. DOI:10.1016/j.talanta.2010.03.057. http://dx.doi.org/10.1016/j.talanta.2010.03.05710.1016/j.talanta.2010.03.057Suche in Google Scholar PubMed

[10] Marcilla, R., Alcaide, F., Sardon, H., Pomposo, J. A., Pozo-Gonzalo, C., & Mecerreyes, D. (2006b). Tailor-made polymer electrolytes based upon ionic liquids and their application in all-plastic electrochromic devices. Electrochemistry Communications, 8, 482–488. DOI:10.1016/j.elecom.2006.01.013. http://dx.doi.org/10.1016/j.elecom.2006.01.01310.1016/j.elecom.2006.01.013Suche in Google Scholar

[11] Marcilla, R., Sanchez-Paniagua, M., Lopez-Ruiz, B., Lopez-Cabarcos, E., Ochoteco, E., Grande, H., & Mecerreyes, D. (2006a). Synthesis and characterization of new polymeric ionic liquid microgels. Journal of Polymer Science Part A: Polymer Chemistry, 44, 3958–3965. DOI:10.1002/pola.21483. http://dx.doi.org/10.1002/pola.2148310.1002/pola.21483Suche in Google Scholar

[12] Meng, Y., Pino, V., & Anderson, J. L. (2009). Exploiting the versatility of ionic liquids in separation science: Determination of low-volatility aliphatic hydrocarbons and fatty acid methyl esters using headspace solid-phase microextraction coupled to gas chromatography. Analytical Chemistry, 81, 7107–7112. DOI:10.1021/ac901377w. http://dx.doi.org/10.1021/ac901377w10.1021/ac901377wSuche in Google Scholar PubMed

[13] Mo, H., Zhu, L., & Xu, W. (2008). Use of 1-alkyl-3-methylimidazolium-based ionic liquids as background electrolytes in capillary electrophoresis for the analysis of inorganic anions. Journal of Separation Science, 31, 2470–2475. DOI:10.1002/jssc.200800167. http://dx.doi.org/10.1002/jssc.20080016710.1002/jssc.200800167Suche in Google Scholar PubMed

[14] Mori, H., Yahagi, M., & Endo, T. (2009). RAFT polymerization of N-vinylimidazolium salts and synthesis of thermoresponsive ionic liquid block copolymers. Macromolecules, 42, 8082–8092. DOI:10.1021/ma901180j. http://dx.doi.org/10.1021/ma901180j10.1021/ma901180jSuche in Google Scholar

[15] Muldoon, M. J., & Gordon, C. M. (2004). Synthesis of geltype polymer beads from ionic liquid monomers. Journal of Polymer Science Part A: Polymer Chemistry, 42, 3865–3869. DOI:10.1002/pola.20299. http://dx.doi.org/10.1002/pola.2029910.1002/pola.20299Suche in Google Scholar

[16] Padarauskas, A. (2006). CE determination of small ions: methods and techniques. Analytical and Bioanalytical Chemistry, 384, 132–144, DOI:10.1007/s00216-005-0186-3. http://dx.doi.org/10.1007/s00216-005-0186-310.1007/s00216-005-0186-3Suche in Google Scholar PubMed

[17] Sakai-Kato, K., Kato, M., Nakajima, T., Toyo’oka, T., Imai, K., & Utsunomiya-Tate, N. (2006). Cationic starch derivatives as dynamic coating additives for protein analysis in capillary electrophoresis. Journal of Chromatography A, 1111, 127–132. DOI:10.1016/j.chroma.2005.06.097. http://dx.doi.org/10.1016/j.chroma.2005.06.09710.1016/j.chroma.2005.06.097Suche in Google Scholar PubMed

[18] Tang, J., Radosz, M., & Shen, Y. (2008). Poly(ionic liquid)s as optically transparent microwave-absorbing materials. Macromolecules, 41, 493–496. DOI:10.1021/ma071762i. http://dx.doi.org/10.1021/ma071762i10.1021/ma071762iSuche in Google Scholar

[19] Yassine, M. M., & Lucy, C. A. (2004). Factors affecting the temporal stability of semipermanent bilayer coatings in capillary electrophoresis prepared using double-chained surfactants. Analytical Chemistry, 76, 2983–2990. DOI:10.1021/ac035372f. http://dx.doi.org/10.1021/ac035372f10.1021/ac035372fSuche in Google Scholar PubMed

[20] Yu, C.-J., & Tseng, W.-L. (2006). Online concentration and separation of basic proteins using a cationic polyelectrolyte in the presence of reversed electroosmotic flow. Electrophoresis, 27, 3569–3577. DOI:10.1002/elps.200600121. http://dx.doi.org/10.1002/elps.20060012110.1002/elps.200600121Suche in Google Scholar PubMed

[21] Yu, L., Qin, W., & Li, S. F. Y. (2005). Ionic liquids as additives for separation of benzoic acid and chlorophenoxy acid herbicides by capillary electrophoresis. Analytica Chimica Acta, 547, 165–171. DOI:10.1016/j.aca.2005.05.047. http://dx.doi.org/10.1016/j.aca.2005.05.04710.1016/j.aca.2005.05.047Suche in Google Scholar

[22] Zhao, F., Meng, Y., & Anderson, J. L. (2008). Polymeric ionic liquids as selective coatings for the extraction of esters using solid-phase microextraction. Journal of Chromatography A, 1208, 1–9. DOI:10.1016/j.chroma.2008.08.071. http://dx.doi.org/10.1016/j.chroma.2008.08.07110.1016/j.chroma.2008.08.071Suche in Google Scholar

[23] Zhao, Q., & Anderson, J. L. (2010). Highly selective GC stationary phases consisting of binary mixtures of polymeric ionic liquids. Journal of Separation Science, 33, 79–87. DOI:10.1002/jssc.200900591. http://dx.doi.org/10.1002/jssc.20090059110.1002/jssc.200900591Suche in Google Scholar

[24] Zhao, Q., Wajert, J. C., & Anderson, J. L. (2010). Polymeric ionic liquids as CO2 selective sorbent coatings for solid-phase microextraction. Analytical Chemistry, 82, 707–713. DOI:10.1021/ac902438k. http://dx.doi.org/10.1021/ac902438k10.1021/ac902438kSuche in Google Scholar

[25] Zhou, L., & Dovletoglou, A. (1997). Practical capillary electrophoresis method for the quantitation of the acetate counter-ion in a novel antifungal lipopeptide. Journal of Chromatography A, 763, 279–284. DOI:10.1016/S0021-9673(96)00982-X. http://dx.doi.org/10.1016/S0021-9673(96)00982-X10.1016/S0021-9673(96)00982-XSuche in Google Scholar

Published Online: 2011-3-16
Published in Print: 2011-6-1

© 2011 Institute of Chemistry, Slovak Academy of Sciences

Artikel in diesem Heft

  1. Steam-reforming of ethanol for hydrogen production
  2. Polymeric ionic liquid as a background electrolyte modifier enhancing the separation of inorganic anions by capillary electrophoresis
  3. Enantioselective extraction of terbutaline enantiomers with β-cyclodextrin derivatives as hydrophilic selectors
  4. Effective photocatalytic degradation of an azo dye over nanosized Ag/AgBr-modified TiO2 loaded on zeolite
  5. Photocatalytically-assisted electrochemical degradation of p-aminophenol in aqueous solutions using zeolite-supported TiO2 catalyst
  6. Spectroscopic investigations and physico-chemical characterization of newly synthesized mixed-ligand complexes of 2-methylbenzimidazole with metal ions
  7. Synthesis, molecular characterisation, and in vivo study of platinum(IV) coordination compounds against B16 mouse melanoma tumours
  8. Swelling properties of particles in amphoteric polyacrylamide dispersion
  9. Electronic structures and spectroscopic regularities of phenylene-modified SWCNTs
  10. An expeditious, environment-friendly, and microwave-assisted synthesis of 5-isatinylidenerhodanine derivatives
  11. Pd-catalysed conjugate addition of arylboronic acids to α,β-unsaturated ketones under microwave irradiation
  12. Regioselective N-alkylation of (2-chloroquinolin-3-yl) methanol with N-heterocyclic compounds using the Mitsunobu reagent
  13. Antimycobacterial 3-phenyl-4-thioxo-2H-1,3-benzoxazine-2(3H)-ones and 3-phenyl-2H-1,3-benzoxazine-2,4(3H)-dithiones substituted on phenyl and benzoxazine moiety in position 6
  14. Polar constituents of Ligustrum vulgare L. and their effect on lipoxygenase activity
  15. Solubility of methane in pure non-ionic surfactants and pure and mixtures of linear alcohols at 298 K and 101.3 kPa
  16. Theoretical studies on polynitrobicyclo[1.1.1]pentanes in search of novel high energy density materials
  17. Insight into the degradation of a manganese(III)-citrate complex in aqueous solutions
Heruntergeladen am 27.11.2025 von https://www.degruyterbrill.com/document/doi/10.2478/s11696-011-0014-5/html?lang=de
Button zum nach oben scrollen