Home Enantioselective extraction of terbutaline enantiomers with β-cyclodextrin derivatives as hydrophilic selectors
Article
Licensed
Unlicensed Requires Authentication

Enantioselective extraction of terbutaline enantiomers with β-cyclodextrin derivatives as hydrophilic selectors

  • Kewen Tang EMAIL logo and Panliang Zhang
Published/Copyright: March 16, 2011
Become an author with De Gruyter Brill

Abstract

Hydrophilic β-cyclodextrin (β-CD) and its derivatives are not soluble in organic liquids but they are highly soluble in water and can interact with enantiomers selectively to form diastereomeric complexes which enable their use as chiral selectors in chiral solvent extraction. In this paper, terbutaline enantiomers were extracted by hydrophilic β-CD derivatives in an aqueous/organic biphasic solvent system with racemic terbutaline in the organic phase and β-CD in the aqueous phase. Five β-CD derivatives, namely: methyl-β-cyclodextrin (Me-β-CD), hydroxyethyl-β-cyclodextrin (HE-β-CD), 2-hydroxyethyl-β-cyclodextrin (2-HE-β-CD), (2-hydroxypropyl)-β-cyclodextrin (HP-β-CD) and (4-sulfobutylether)-β-cyclodextrin (SBE-β-CD) were used as hydrophilic selectors, respectively. Process variables affecting extraction efficiency were investigated, namely influence of the type of organic solvents and β-CD derivatives, concentrations of selectors and terbutaline enantiomers, pH, and temperature. Experimental results show that the efficiency of extraction depends, often strongly, on process variables. All five β-CD derivatives studied preferentially extract the more biologically active (R)-terbutaline from the organic phase; HP-β-CD has the strongest recognition ability. The maximum enantioselectivity (α) of 1.42 was achieved under optimal conditions: pH 7.0 and temperature of 5°C. Utilization of the extraction method for separation of terbutaline enantiomers is expected to be cheap and easy to scale up to commercial scale.

[1] Ameyibor, E., & Stewart, J. T. (1997). Enantiomeric HPLC separation of selected chiral drugs using native and derivatized β-cyclodextrins as chiral mobile phase additives. Journal of Liquid Chromatography & Related Technologies, 20, 855–869. DOI: 10.1080/10826079708013658. http://dx.doi.org/10.1080/1082607970801365810.1080/10826079708013658Search in Google Scholar

[2] Bechet, I., Paques, P., Fillet, M., Hubert, P., & Crommen, J. (1995). Chiral separation of basic drugs by capillary zone electrophoresis with cyclodextrin additives. Electrophoresis, 15, 818–823. DOI: 10.1002/elps.11501501115. http://dx.doi.org/10.1002/elps.1150150111510.1002/elps.11501501115Search in Google Scholar

[3] Colera, M., Costero, A., Gaviña, P., & Gil, S. (2005). Synthesis of chiral 18-crown-6 ethers containing lipophilic chains and their enantiomeric recognition of chiral ammonium picrates. Tetrahedron: Asymmetry, 16, 2673–2679. DOI: 10.1016/j.tetasy.2005.06.039. http://dx.doi.org/10.1016/j.tetasy.2005.06.03910.1016/j.tetasy.2005.06.039Search in Google Scholar

[4] De Camp, W. H. (1989). The FDA perspective on the development of stereoisomers. Chirality, 1, 2–6. DOI: 10.1002/chir.530010103. http://dx.doi.org/10.1002/chir.53001010310.1002/chir.530010103Search in Google Scholar

[5] Gratz, S. R., & Stalcup, A. M. (1998). Enantiomeric separations of terbutaline by CE with a sulfated β-cyclodextrin chiral selector: A quantitative binding study. Analytical Chemistry, 70, 5166–5171. DOI: 10.1021/ac980780i. http://dx.doi.org/10.1021/ac980780i10.1021/ac980780iSearch in Google Scholar

[6] Hallett, A. J., Kwant, G. J., & de Vries, J. G. (2009). Continuous separation of racemic 3,5-dinitrobenzoyl-amino acids in a centrifugal contact separator with the aid of cinchona-based chiral host compounds. Chemistry — A European Journal, 15, 2111–2120. DOI: 10.1002/chem.200800797. http://dx.doi.org/10.1002/chem.20080079710.1002/chem.200800797Search in Google Scholar

[7] Hutt, A. J. (1991). Drug chirality: Impact on pharmaceutical regulation. Chirality, 3, 161–164. DOI: 10.1002/chir.530030 303. http://dx.doi.org/10.1002/chir.530030303Search in Google Scholar

[8] Jiao, F. P., Chen, X. Q., Hu, W. G., Ning, F. R., & Huang, K. L. (2007). Enantioselective extraction of mandelic acid enantiomers by L-dipentyl tartrate and β-cyclodextrin as binary chiral selectors. Chemial Papers, 61, 326–328. DOI: 10.2478/s11696-007-0041-4. http://dx.doi.org/10.2478/s11696-007-0041-410.2478/s11696-007-0041-4Search in Google Scholar

[9] Kellner, K.-H., Blasch, A., Chmiel, H., Lämmerhofer, M., & Lindner, W. (1997). Enantioseparation of N-protected α-amino acid derivatives by liquid-liquid extraction technique employing stereoselective ion-pair formation with a carbamoylated quinine derivative. Chirality, 9, 268–273. DOI: 10.1002/(SICI)1520-636X(1997)9:3<268::AID-CHIR11>3.0.CO;2-L. http://dx.doi.org/10.1002/(SICI)1520-636X(1997)9:3<268::AID-CHIR11>3.0.CO;2-L10.1002/(SICI)1520-636X(1997)9:3<268::AID-CHIR11>3.0.CO;2-LSearch in Google Scholar

[10] Keurentjes, J. T. F., Nabuurs, L. J. W. M., & Vegter, E. A. (1996). Liquid membrane technology for the separation of racemic mixtures. Journal of Membrane Science, 113, 351–360. DOI: 10.1016/0376-7388(95)00176-X. http://dx.doi.org/10.1016/0376-7388(95)00176-X10.1016/0376-7388(95)00176-XSearch in Google Scholar

[11] Kim, K. H., Kim, D. S., Hong, S.-P., & Keon, O. S. (2000). Reversed-phase high performance liquid chromatographic separation of the enantiomers of terbutaline by derivatization with 2,3,4,6-tetra-o-acetyl-β-D-glucopyranosyl isothio cyanate. Archives of Pharmacal Research, 23, 26–30. DOI: 10.1007/BF02976461. http://dx.doi.org/10.1007/BF0297646110.1007/BF02976461Search in Google Scholar

[12] Kim, K. H., & Park, Y. H. (1998). Enantioselective inclusion between terbutaline enantiomers and hydroxypropyl-β-cyclodextrin. International Journal of Pharmaceutics, 175, 247–253. DOI: 10.1016/S0378-5173(98)00278-6. http://dx.doi.org/10.1016/S0378-5173(98)00278-610.1016/S0378-5173(98)00278-6Search in Google Scholar

[13] Koska, J., & Haynes, C. A. (2001). Modelling multiple chemical equilbria in chiral partition systems. Chemical Engineering Science, 56, 5853–5864. DOI: 10.1016/S0009-2509(00)00419-X. http://dx.doi.org/10.1016/S0009-2509(00)00419-X10.1016/S0009-2509(00)00419-XSearch in Google Scholar

[14] Liu, Y., You, C.-C., Wada, T., & Inoue, Y. (1999). Molecular recognition studies on supramolecular systems. 22. Size, shape, and chiral recognition of aliphatic alcohols by organoselenium-modified cyclodextrins. The Journal of Organic Chemistry, 64, 3630–3634. DOI: 10.1021/jo982483j. http://dx.doi.org/10.1021/jo982483j10.1021/jo982483jSearch in Google Scholar

[15] Maier, N. M., Franco, P., & Lindner, W. (2001). Separation of enantiomers: needs, challenges, perspectives. Journal of Chromatography A, 906, 3–33. DOI: 10.1016/S0021-9673(00)00532-X. http://dx.doi.org/10.1016/S0021-9673(00)00532-X10.1016/S0021-9673(00)00532-XSearch in Google Scholar

[16] O’Brien, T., Crocker, L., Thompson, R., Thompson, K., Toma, P. H., Conlon, D. A., Feibush, B., Moeder, C., Bicker, G., & Grinberg, N. (1997). Mechanistic aspects of chiral discrimination on modified cellulose. Analytical Chemistry, 69, 1999–2007. DOI: 10.1021/ac961241l. http://dx.doi.org/10.1021/ac961241l10.1021/ac961241lSearch in Google Scholar

[17] Pietraszkiewicz, M., Koźbiał, M., & Pietraszkiewicz, O. (1998). Chiral discrimination of amino acids and their potassium or sodium salts by optically active crown ether derived from Dmannose. Journal of Membrane Science, 138, 109–113. DOI: 10.1016/S0376-7388(97)00218-4. http://dx.doi.org/10.1016/S0376-7388(97)00218-410.1016/S0376-7388(97)00218-4Search in Google Scholar

[18] Prelog, V., Kovačević, M., & Egli, M. (1989). Lipophilic tartaric acid esters as enantioselective ionophores. Angewandte Chemie International Edition, 28, 1147–1152. DOI: 10.1002/anie.198911473. http://dx.doi.org/10.1002/anie.19891147310.1002/anie.198911473Search in Google Scholar

[19] Rekharsky, M. V., & Inoue, Y. (1998). Complexation thermodynamics of cyclodextrins. Chemical Reviews, 98, 1875–1918. DOI: 10.1021/cr970015o. http://dx.doi.org/10.1021/cr970015o10.1021/cr970015oSearch in Google Scholar PubMed

[20] Rouhi, A. M. (2003). Chiral business. Chemical & Engineering News, 81, 45–55. http://dx.doi.org/10.1021/cen-v081n018.p04510.1021/cen-v081n018.p045Search in Google Scholar

[21] Steensma, M., Kuipers, N. J. M., de Haan, A. B., & Kwant, G. (2006). Influence of process parameters on extraction equilibria for the chiral separation of amines and amino-alcohols with a chiral crown ether. Journal of Chemical Technology and Biotechnology, 81, 588–597. DOI: 10.1002/jctb.1434. http://dx.doi.org/10.1002/jctb.143410.1002/jctb.1434Search in Google Scholar

[22] Schuur, B., Winkelman, J. G. M., de Vries, J. G., & Heeres, H. J. (2010). Experimental and modeling studies on the enantioseparation of 3,5-dinitrobenzoyl-(R),(S)-leucine by continuous liquid-liquid extraction in a cascade of centrifugal contactor separators. Chemical Engineering Science, 65, 4682–4690. DOI: 10.1016/j.ces.2010.05.015. http://dx.doi.org/10.1016/j.ces.2010.05.01510.1016/j.ces.2010.05.015Search in Google Scholar

[23] Tan, B., Luo, G., & Wang, J. (2007). Extractive separation of amino acid enantiomers with co-extractants of tartaric acid derivative and Aliquat-336. Separation and Purification Technology, 53, 330–336. DOI: 10.1016/j.seppur.2006.08.021. http://dx.doi.org/10.1016/j.seppur.2006.08.02110.1016/j.seppur.2006.08.021Search in Google Scholar

[24] Tan, B., Luo, G., & Wang, J. (2006). Enantioseperation of amino acids by co-extractants with di(2-ethylhexyl)phosphoric acid and tartaric acid derivatives. Tetrahedron: Asymmetry, 17, 883–891. DOI: 10.1016/j.tetasy.2006.01.038. http://dx.doi.org/10.1016/j.tetasy.2006.01.03810.1016/j.tetasy.2006.01.038Search in Google Scholar

[25] Tang, K., Chen, Y., Huang, K., & Liu, J. (2007). Enantioselective resolution of chiral aromatic acids by biphasic recognition chiral extraction. Tetrahedron: Asymmetry, 18, 2399–2408. DOI: 10.1016/j.tetasy.2007.09.031. http://dx.doi.org/10.1016/j.tetasy.2007.09.03110.1016/j.tetasy.2007.09.031Search in Google Scholar

[26] Tang, K., Chen, Y., & Liu, J. (2008). Resolution of zopiclone enantiomers by biphasic recognition chiral extraction. Separation and Purification Technology, 62, 681–686. DOI: 10.1016/j.seppur.2008.03.029. http://dx.doi.org/10.1016/j.seppur.2008.03.02910.1016/j.seppur.2008.03.029Search in Google Scholar

[27] Tang, K., Song, L., Liu, Y., Pan, Y., & Jiang, X. (2010). Separation of flurbiprofen enantiomers by biphasic recognition chiral extraction. Chemical Engineering Journal, 158, 411–417. DOI: 10.1016/j.cej.2010.01.009. http://dx.doi.org/10.1016/j.cej.2010.01.00910.1016/j.cej.2010.01.009Search in Google Scholar

[28] Tang, K., Yi, J., Liu, Y., Jiang, X., & Pan, Y. (2009). Enantioselective separation of R,S-phenylsuccinic acid by biphasic recognition chiral extraction. Chemical Engineering Science, 64, 4081–4088. DOI: 10.1016/j.ces.2009.06.029. http://dx.doi.org/10.1016/j.ces.2009.06.02910.1016/j.ces.2009.06.029Search in Google Scholar

[29] Verkuijl, B. J. V., Minnaard, A. J., de Vries, J. G., & Feringa, B. L. (2009). Chiral separation of underivatized amino acids by reactive extraction with palladium-BINAP complexes. The Journal of Organic Chemistry, 74, 6526–6533. DOI: 10.1021/jo901002d. http://dx.doi.org/10.1021/jo901002d10.1021/jo901002dSearch in Google Scholar PubMed

[30] Viegas, R. M. C., Afonso, C. A. M., Crespo, J. G., & Coelhoso, I. M. (2007). Modelling of the enantio-selective extraction of propranolol in a biphasic system. Separation and Purification Technology, 53, 224–234. DOI: 10.1016/j.seppur.2006.07.010. http://dx.doi.org/10.1016/j.seppur.2006.07.01010.1016/j.seppur.2006.07.010Search in Google Scholar

[31] Wang, X., Zeng, H., Wei, Y., & Lin, J.-M. (2006). A reversible fluorescence sensor based on insoluble β-cyclodextrin polymer for direct determination of bisphenol A (BPA). Sensors and Actuators, B: Chemical, 114, 565–572. DOI: 10.1016/j.snb.2005.06.020. http://dx.doi.org/10.1016/j.snb.2005.06.02010.1016/j.snb.2005.06.020Search in Google Scholar

[32] Zhou, S., Ouyang, J., Baeyens, W. R. G., Zhao, H., & Yang, Y. (2006). Chiral separation of four fluoroquinolone compounds using capillary electrophoresis with hydroxypropyl-β-cyclodextrin as chiral selector. Journal of Chromatography A, 1130, 296–301. DOI: 10.1016/j.chroma.2006.05.055. http://dx.doi.org/10.1016/j.chroma.2006.05.05510.1016/j.chroma.2006.05.055Search in Google Scholar PubMed

Published Online: 2011-3-16
Published in Print: 2011-6-1

© 2011 Institute of Chemistry, Slovak Academy of Sciences

Articles in the same Issue

  1. Steam-reforming of ethanol for hydrogen production
  2. Polymeric ionic liquid as a background electrolyte modifier enhancing the separation of inorganic anions by capillary electrophoresis
  3. Enantioselective extraction of terbutaline enantiomers with β-cyclodextrin derivatives as hydrophilic selectors
  4. Effective photocatalytic degradation of an azo dye over nanosized Ag/AgBr-modified TiO2 loaded on zeolite
  5. Photocatalytically-assisted electrochemical degradation of p-aminophenol in aqueous solutions using zeolite-supported TiO2 catalyst
  6. Spectroscopic investigations and physico-chemical characterization of newly synthesized mixed-ligand complexes of 2-methylbenzimidazole with metal ions
  7. Synthesis, molecular characterisation, and in vivo study of platinum(IV) coordination compounds against B16 mouse melanoma tumours
  8. Swelling properties of particles in amphoteric polyacrylamide dispersion
  9. Electronic structures and spectroscopic regularities of phenylene-modified SWCNTs
  10. An expeditious, environment-friendly, and microwave-assisted synthesis of 5-isatinylidenerhodanine derivatives
  11. Pd-catalysed conjugate addition of arylboronic acids to α,β-unsaturated ketones under microwave irradiation
  12. Regioselective N-alkylation of (2-chloroquinolin-3-yl) methanol with N-heterocyclic compounds using the Mitsunobu reagent
  13. Antimycobacterial 3-phenyl-4-thioxo-2H-1,3-benzoxazine-2(3H)-ones and 3-phenyl-2H-1,3-benzoxazine-2,4(3H)-dithiones substituted on phenyl and benzoxazine moiety in position 6
  14. Polar constituents of Ligustrum vulgare L. and their effect on lipoxygenase activity
  15. Solubility of methane in pure non-ionic surfactants and pure and mixtures of linear alcohols at 298 K and 101.3 kPa
  16. Theoretical studies on polynitrobicyclo[1.1.1]pentanes in search of novel high energy density materials
  17. Insight into the degradation of a manganese(III)-citrate complex in aqueous solutions
Downloaded on 27.11.2025 from https://www.degruyterbrill.com/document/doi/10.2478/s11696-011-0011-8/pdf?lang=en
Scroll to top button