Home Asymmetric synthesis of machilin C and its analogue
Article
Licensed
Unlicensed Requires Authentication

Asymmetric synthesis of machilin C and its analogue

  • Yamu Xia EMAIL logo and Wei Wang
Published/Copyright: August 14, 2010
Become an author with De Gruyter Brill

Abstract

Full details of the asymmetric total synthesis of erythro-8-O-4′-neolignan, machilin C, and its analogue perseal A are reported. The synthesis was involved in the Sharpless dihydroxylation reaction that occurred with excellent asymmetric induction, and the Mitsunobu reaction which occurred with inversion of the absolute configuration from the threo to the erythro isomer. The synthesis was achieved from simple vanillin in eight to twelve steps.

[1] Barata, L. E. S., Santos, L. S., Ferri, P. H., Phillipson, J. D., Paine, A., & Croft, S. L. (2000). Anti-leishmanial activity of neolignans from Virola species and synthetic analogues. Phytochemistry, 55, 589–595. DOI: 10.1016/S0031-9422(00)00240-5. http://dx.doi.org/10.1016/S0031-9422(00)00240-510.1016/S0031-9422(00)00240-5Search in Google Scholar

[2] Curti, C., Zanardi, F., Battistini, L., Sartori, A., Rassu, G., Pinna, L., & Casiraghi, G. (2006). Streamlined, asymmetric synthesis of 8,4′-oxyneolignans. Journal of Organic Chemistry, 71, 8552–8558. DOI: 10.1021/jo061521t. http://dx.doi.org/10.1021/jo061521t10.1021/jo061521tSearch in Google Scholar

[3] Cutillo, F., D’Abrosca, B., DellaGreca, M., Fiorentino, A., & Zarrelli, A. (2003). Lignans and neolignans from Brassica fruticulosa: effects on seed germination and plant growth. Journal of Agricultural and Food Chemistry, 51, 6165–6172. DOI: 10.1021/jf034644c. http://dx.doi.org/10.1021/jf034644c10.1021/jf034644cSearch in Google Scholar

[4] Mei, R.-Q., Wang, Y.-H., Du, G.-H., Liu, G.-M., Zhang, L., & Cheng, Y.-X. (2009). Antioxidant lignans from the fruits of Broussonetia papyrifera. Journal of Natural Products, 72, 621–625. DOI: 10.1021/np800488p. http://dx.doi.org/10.1021/np800488p10.1021/np800488pSearch in Google Scholar

[5] Mitsunobu, O. (1981). The use of diethyl azodicarboxylate and triphenylphosphine in synthesis and transformation of natural products. Synthesis, 1981, 1–28. DOI: 10.1055/s-1981-29317. http://dx.doi.org/10.1055/s-1981-2931710.1055/s-1981-29317Search in Google Scholar

[6] Peng, K., Li, J.-P., Xie, X.-G., Wang, Q.-L., She, X.-G., & Pan, X.-F. (2005). Enantioselective synthesis of 8-O-4′ neolignans (−)machilin D and virolin. Lanzhou Daxue Xuebao, Ziran Kexueban (Journal of Lanzhou University, Natural Sciences), 41, 53–55. DOI: 10.3321/j.issn:0455-2059.2005.02.013. (in Chinese) Search in Google Scholar

[7] Ridley, R. G. (2002). Medical need, scientific opportunity and the drive for antimalarial drugs. Nature, 415, 686–693. DOI: 10.1038/415686a. http://dx.doi.org/10.1038/415686a10.1038/415686aSearch in Google Scholar

[8] Sefkow, M. (2003). The stereoselective synthesis of neolignans. Synthesis, 2003, 2595–2625. DOI: 10.1055/s-2003-42482. http://dx.doi.org/10.1055/s-2003-4248210.1055/s-2003-42482Search in Google Scholar

[9] Sharpless, K. B., Amberg, W., Bennani, Y. L., Crispino, G. A., Hartung, J., Jeong, K.-S., Kwong, H.-L., Morikawa, K., Wang, Z.-M., Xu, D., & Zhang, X.-L. (1992). The osmiumcatalyzed asymmetric dihydroxylatiom: A new ligand class and a process improvement. Journal of Organic Chemistry, 57, 2768–2771. DOI: 10.1021/jo00036a003. http://dx.doi.org/10.1021/jo00036a00310.1021/jo00036a003Search in Google Scholar

[10] Shimomura, H., Sashida, Y., & Oohara, M. (1987). Lignans from Machilus thunbergii. Phytochemistry, 26, 1513–1515. DOI: 10.1016/S0031-9422(00)81847-6. http://dx.doi.org/10.1016/S0031-9422(00)81847-610.1016/S0031-9422(00)81847-6Search in Google Scholar

[11] Tsai, I.-L., Hsieh, C.-F., Duh, C.-Y., & Chen, I.-S. (1996). Cytotoxic neolignans from Persea obovatifolia. Phytochemistry, 43, 1261–1263. DOI: 10.1016/S0031-9422(96)00509-2. http://dx.doi.org/10.1016/S0031-9422(96)00509-210.1016/S0031-9422(96)00509-2Search in Google Scholar

[12] Ward, R. S. (1999). Lignans, neolignans and related compounds. Natural Product Reports, 16, 75–96. DOI: 10.1039/a705992b. http://dx.doi.org/10.1039/a705992b10.1039/a705992bSearch in Google Scholar

[13] Zacchino, S. A. (1994). Enantioselective route to threo 8.0.4′-type neolignans: Synthesis of (−)-virolin. Journal of Natural Products, 57, 446–451. DOI: 10.1021/np50106a002. http://dx.doi.org/10.1021/np50106a00210.1021/np50106a002Search in Google Scholar

[14] Zhang, H.-J., Tamez, P. A., Hoang, V. D., Tan, G. T., Hung, N. V., Xuan, L. T., Huong, L. M., Cuong, N. M., Thao, D. T., Soejarto, D. D., Fong, H. H. S., & Pezzuto, J. M. (2001). Antimalarial compounds from Rhaphidophora decursiva. Journal of Natural Products, 64, 772–777. DOI: 10.1021/np010037c. http://dx.doi.org/10.1021/np010037c10.1021/np010037cSearch in Google Scholar PubMed

Published Online: 2010-8-14
Published in Print: 2010-10-1

© 2010 Institute of Chemistry, Slovak Academy of Sciences

Articles in the same Issue

  1. A deuterium-palladium electrode as a new sensor in non-aqueous solutions: potentiometric titration of weak acids in acetonitrile and benzonitrile
  2. Chemical variability of Artemisia herba-alba Asso essential oils from East Morocco
  3. Ag and Cu loaded on TiO2/graphite as a catalyst for Escherichia coli-contaminated water disinfection
  4. Direct electrochemistry and electrocatalysis of horseradish peroxidase immobilized in hyaluronic acid and single walled carbon nanotubes composite film
  5. Biological buffered saline solution as solvent in agar-carbomer hydrogel synthesis
  6. GC/MS analysis of gaseous degradation products formed during extrusion blow molding process of PE films
  7. Preparation, spectral, thermal, and biological properties of zinc(II) 4-chloro- and 5-chlorosalicylate complexes with methyl 3-pyridylcarbamate and phenazone
  8. Polyamidoamine dendrimer and dextran conjugates: preparation, characterization, and in vitro and in vivo evaluation
  9. Morphological characteristics of modified freeze-dried poly(N-isopropylacrylamide) microspheres studied by optical microscopy, SEM, and DLS
  10. Photophysical properties of novel ferrocenyl quinoline derivatives with red emission in solutions and polymeric matrices
  11. Preparation and characterization of hydrogels based on acryloyl end-capped four-arm star-shaped poly(ethylene glycol)-branched-oligo(l-lactide) via Michael-type addition reaction
  12. ArF laser photolytic deposition and thermal modification of an ultrafine chlorohydrocarbon
  13. Asymmetric synthesis of machilin C and its analogue
  14. Synthesis and study of some new N-substituted imide derivatives as potential antibacterial agents
  15. Single crystal X-ray structure and optical properties of anthraquinone-based dyes
  16. Low-density polyethylene in mixtures of hexane and benzene derivates
  17. Factors influencing aggregation behavior of poly(γ-benzyl l-glutamate)-graft-poly(ethylene glycol) copolymer in mixed solvents
  18. Chemical evaluation of Fallopia species leaves and antioxidant properties of their non-cellulosic polysaccharides
  19. Rapid synthesis and bioactivities of 3-(nitromethylene)indolin-2-one analogues
  20. ZnO nanorods catalyzed N-alkylation of piperidin-4-one, 4(3H)-pyrimidone, and ethyl 6-chloro-1,2-dihydro-2-oxo-4-phenylquinoline-3-carboxylate
Downloaded on 3.10.2025 from https://www.degruyterbrill.com/document/doi/10.2478/s11696-010-0040-8/html?lang=en
Scroll to top button