Startseite Novel use of silicon nanocrystals and nanodiamonds in biology
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Novel use of silicon nanocrystals and nanodiamonds in biology

  • Anna Fucikova EMAIL logo , Jan Valenta , Ivan Pelant und Vitezslav Brezina
Veröffentlicht/Copyright: 8. Oktober 2009
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The presented work is aimed at the development of nontoxic nanocrystalline silicon fluorescence labels, biodegradable in living body and long-term stable, and of fluorescent nanodiamonds mainly for in vitro use. These novel fluorescence labels could be very good substitutes for commercially used quantum dots (e.g. cadmium compound quantum dots) which can be toxic according to the latest results. In this work, manufacturing of porous nanocrystalline silicon (por-Si) is described, several basic optical properties of por-Si are presented and the influence of Si nanocrystals, nanodiamonds, and milled silicon on the growth of a cell culture of L929 mouse fibroblast and HeLa cells is compared. Bio-interaction of nanoparticles was studied by optical transmission microscopy, time-lapse microphotography of cell culture evolution, fluorescence microscopy, fluorescence microspectroscopy, and scanning electron microscopy. The size and shape of nanocrystals were determined using atomic force microscopy (AFM).

[1] Canham, L. T. (1990). Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers. Applied Physics Letters, 57, 1046–1048. DOI: 10.1063/1.103561. http://dx.doi.org/10.1063/1.10356110.1063/1.103561Suche in Google Scholar

[2] Dohnalová, K., Pelant, I., Kůsov Crégut, O., Rehspringer, J.-L., Hönerlage, B., Ostatnicky, T., & Bakardjeva, S. (2008). Closely packed luminescent silicon nanocrystals in a distributed-feedback laser cavity. New Journal of Physics, 10, 063014. DOI: 10.1088/1367-2630/10/6/063014. 10.1088/1367-2630/10/6/063014Suche in Google Scholar

[3] Eidelman, E. D., Siklitsky, V. I., Sharonova, M. A., Yagovkina, A., Vul’, A. Ya., Takahashi, M., Inakuma, M., Ozawa, M., & Osawa, E. (2005). A stable suspension of single ultrananocrystalline diamond particles. Diamond and Related Materials, 14, 1765–1769. DOI: 10.1016/j.diamond.2005.08.057. http://dx.doi.org/10.1016/j.diamond.2005.08.05710.1016/j.diamond.2005.08.057Suche in Google Scholar

[4] Fučíková, A., Valenta, J., Pelant, I., & Březina, V. (2007). Studies of nanocrystalline silicon colloidal suspensions and their interaction with a biological system. Acta Metallurgica Slovaca, 13, 88–92. Suche in Google Scholar

[5] Kumar, C. S. S. R. (Ed.) (2005). Biofunctionalization of nanomaterials. Weinheim, Germany: Wiley-VCH. Suche in Google Scholar

[6] Kůsová, K., Pelant, I., Fučíková, A. & Valenta, J. (2008). Yellow-emitting colloidal suspensions of silicon nanocrystals: Fabrication technology, luminescence performance and application prospects. Physica E, 41, 982–985. DOI: 10.1016/j.physe.2008.08.02. http://dx.doi.org/10.1016/j.physe.2008.08.022Suche in Google Scholar

[7] Medintz, I. L., Uyeda, H. T., Goldman, E. R., & Mattoussi, H. (2005). Quantum dot bioconjugates for imaging, labelling and sensing, Nature Materials, 4, 435–446. DOI: 10.1038/nmat1390. http://dx.doi.org/10.1038/nmat139010.1038/nmat1390Suche in Google Scholar PubMed

[8] Murcia, M. J., & Neumann, C. A. (2005). Biofunctionalization of fluorescent nanoparticles. In C. S. S. R. Kumar (Ed.), Biofunctionalization of nanomaterials (pp. 1–40). Weinheim, Germany: Wiley-VCH. Suche in Google Scholar

[9] Osawa, E. (2005). Disintegration and purification of crude aggregates of detonation nanodiamond. A few remarks on nano methodology. In D. M. Gruen, O. A. Shenderova, & A. Ya. Vul’ (Eds.), Synthesis, properties and applications of ultrananocrystalline diamond (pp. 231–240). Dordrecht, The Netherlands: Springer. http://dx.doi.org/10.1007/1-4020-3322-2_1710.1007/1-4020-3322-2_17Suche in Google Scholar

[10] Ossicini, S., Pavesi, L., & Priolo, F. (2003). Light emitting silicon for microphotonics. Berlin/Heidelberg, Germany: Springer. 10.1007/b13588Suche in Google Scholar

[11] Valenta, J., Fučíková, A., Pelant, I., Kůsová, K., Aleknavičius, A., Cibulka, O., Fojtík, A., & Kada, G. (2008). On the origin of the fast photoluminescence band in small silicon nanoparticles. New Journal of Physics, 10, 073022. DOI: 10.1088/1367-2630/10/7/073022. 10.1088/1367-2630/10/7/073022Suche in Google Scholar

[12] Veselská, R., & Janisch, R. (2000). The effect of UV irradiation on changes in cytoskeleton and viability of mouse fibroblast L929 cell line. Scripta Medica, 73, 393–408. Suche in Google Scholar

[13] Vial, S., Mansuy, C., Sagan, S., Irinopoulou, T., Burlina, F., Boudou, J.-P., Chassaing, G., & Lavielle, S. (2008). Peptidegrafted nanodiamonds: preparation, cytotoxicity and uptake in cells. ChemBioChem, 9, 2113–2119. DOI: 10.1002/cbic.200800247. http://dx.doi.org/10.1002/cbic.20080024710.1002/cbic.200800247Suche in Google Scholar PubMed

[14] Yu, S.-J., Kang, M.-W., Chang, H.-C., Chen, K.-M., & Yu, Y.-C. (2005). Bright fluorescent nanodiamonds: No photobleaching and low cytotoxicity. Journal of the American Chemical Society, 127, 17604–17605. DOI: 10.1021/ja0567081. http://dx.doi.org/10.1021/ja056708110.1021/ja0567081Suche in Google Scholar PubMed

Published Online: 2009-10-8
Published in Print: 2009-12-1

© 2009 Institute of Chemistry, Slovak Academy of Sciences

Artikel in diesem Heft

  1. Utilization of solid phase spectrophotometry for the determination of trace amounts of copper using 5-(2-benzothiazolylazo)-8-hydroxyquinoline
  2. Analysis of spectinomycin in fermentation broth by reversed-phase chromatography
  3. An amperometric sensor for uric acid based on ordered mesoporous carbon-modified pyrolytic graphite electrode
  4. Utility of π-acceptor reagents for spectrophotometric determination of sulphonamide drugs via charge-transfer complex formation
  5. A graph theoretical approach to the effect of mutation on the flexibility of the DNA binding domain of p53 protein
  6. Aquaculture by-product: a source of proteolytic enzymes for detergent additives
  7. Effect of anthraquinone on brightness value and crystalline structure of pulp during soda processes
  8. Selection of a method for determination of activity of pectinolytic enzymes in berry fruit materials
  9. Study on polymeric micelles of poly(γ-benzyl l-glutamate)-graft-poly(ethylene glycol) copolymer and its mixtures with poly(γ-benzyl l-glutamate) homopolymer in ethanol
  10. Synthesis and characterization of mesoporous molecular sieves
  11. Growth mechanism and characterization of ZnO nano-tubes synthesized using the hydrothermal-etching method
  12. Novel use of silicon nanocrystals and nanodiamonds in biology
  13. Fluoride anion sensing using colorimetric reagents containing binaphthyl moiety and urea binding site
  14. Spectrophotometric methods for sertraline hydrochloride and/or clidinium bromide determination in bulk and pharmaceutical preparations
  15. Study of physicochemical properties-antitubercular activity relationship of naphthalene-1,4-dione analogs: A QSAR approach
  16. Spectroscopic study of protonation of oligonucleotides containing adenine and cytosine
  17. Rheological properties of doughs with buckwheat and quinoa additives
  18. Synthesis and isolation of methyl bismuth cysteine and its definitive identification by high resolution mass spectrometry
Heruntergeladen am 27.11.2025 von https://www.degruyterbrill.com/document/doi/10.2478/s11696-009-0075-x/pdf
Button zum nach oben scrollen