Startseite Selection of a method for determination of activity of pectinolytic enzymes in berry fruit materials
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Selection of a method for determination of activity of pectinolytic enzymes in berry fruit materials

  • Alina Jakób EMAIL logo , Jolanta Bryjak und Milan Polakovič
Veröffentlicht/Copyright: 8. Oktober 2009
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The goal of the study was to find the most accurate and sensitive method for the determination of activity of pectinolytic enzymes in complex mixtures obtained from fruit materials such as raw cloudberry and raspberry juices. Several assay methods based on enzymatic reactions using viscometric, colourimetric, spectrophotometric, or pH-titration detection of the reaction products were tested. Problems with the application of the selected methods, such as very low detection signal or very large background signal, were observed. Among the tested methods, only a modified method based on the continuous recording of the released carboxyl groups titration allowed to assay the activity of exogenous pectin methylesterase with a good linearity, sensitivity, accuracy, and minimised the interference of other fruit components.

[1] Benen, J. A. E., Voragen, A. G. J., & Visser, J. (2003). Pectic enzymes. In J. R. Whitacker, A. G. J. Voragen, & D. W. S. Wong (Eds.), Handbook of food enzymology (pp. 845–847). New York: Marcel Dekker, Inc. Suche in Google Scholar

[2] Cherqui, A., & Tjallingii, W. F. (2000). Salivary proteins of aphids, a pilot study on identification, separation and immunolocalisation. Journal of Insect Physiology, 46, 1177–1186. DOI: 10.1016/S0022-1910(00)00037-8. http://dx.doi.org/10.1016/S0022-1910(00)00037-810.1016/S0022-1910(00)00037-8Suche in Google Scholar

[3] Csiszár, E., Losonczi, A., Szakács, G., Bezúr, L., & Kustos, K. (2004). Influence of EDTA complexing agent on biopreparation of linen fabric. Biocatalysis and Biotransformation, 22, 369–374. DOI: 10.1080/10242420400024524. http://dx.doi.org/10.1080/1024242040002452410.1080/10242420400024524Suche in Google Scholar

[4] Duvetter, T., Loey, A. V., Smout, C., Verlent, I., Nguyen, B. L., & Hendrickx, M. (2005). Aspergillus aculeatus pectin methylesterase: study of the inactivation by temperature and pressure and the inhibition by pectin methylesterase inhibitor. Enzyme and Microbial Technology, 36, 385–390. DOI: 10.1016/j.enzmictec.2004.01.014. http://dx.doi.org/10.1016/j.enzmictec.2004.01.01410.1016/j.enzmictec.2004.01.014Suche in Google Scholar

[5] Grsic-Rausch, S., & Rausch, T. (2004). A coupled spectrophotometric enzyme assay for the determination of pectin methylesterase activity and its inhibition by proteinaceous inhibitors. Analytical Biochemistry, 333, 14–18. DOI: 10.1016/j.ab.2004.04.042. http://dx.doi.org/10.1016/j.ab.2004.04.04210.1016/j.ab.2004.04.042Suche in Google Scholar

[6] Gummadi, S. N., & Panda, T. (2003). Purification and biochemical properties of microbial pectinases — a review. Process Biochemistry, 38, 987–996. DOI: 10.1016/S0032-9592(02)00203-0. http://dx.doi.org/10.1016/S0032-9592(02)00203-010.1016/S0032-9592(02)00203-0Suche in Google Scholar

[7] Hagerman, A. E., & Austin, P. J. (1986). Continuous spectrophotometric assay for plant pectin methyl esterase. Journal of Agricultural and Food Chemistry, 34, 440–444. DOI: 10.1021/jf00069a015. http://dx.doi.org/10.1021/jf00069a01510.1021/jf00069a015Suche in Google Scholar

[8] Jayani, R. S., Saxena, S., & Gupta, R. (2005). Microbial pectinolytic enzymes: A review. Process Biochemistry, 40, 2931–2944. DOI: 10.1016/j.procbio.2005.03.026. http://dx.doi.org/10.1016/j.procbio.2005.03.02610.1016/j.procbio.2005.03.026Suche in Google Scholar

[9] Karakurt, Y., & Donald, J. H. (2002). Cell wall-degrading enzymes and pectin solubility and depolymerization in immature and ripe watermelon (Citrullus lanatus) fruit in response to exogenous ethylene. Physiologia Plantarum, 116, 398–405. DOI: 10.1034/j.1399-3054.2002.1160316. http://dx.doi.org/10.1034/j.1399-3054.2002.1160316.x10.1034/j.1399-3054.2002.1160316.xSuche in Google Scholar

[10] Kashyap, D. R., Vohra, P. K., Chopra, S., & Tewari, R. (2001). Applications of pectinases in the commercial sector: a review. Bioresource Technology, 77, 215–227. DOI: 10.1016/S0960-8524(00)00118-8. http://dx.doi.org/10.1016/S0960-8524(00)00118-810.1016/S0960-8524(00)00118-8Suche in Google Scholar

[11] Lozano, P., Manjon, A., Romojaro, F., & Iborra, J. L. (1988). Properties of pectolytic enzymes covalently bound to nylon for apricot juice clarification. Process Biochemistry, 23, 75–78. Suche in Google Scholar

[12] Maldonado, M. C., Strasser de Saad, A. M., & Callieri, D. (1994). Purification and characterization of pectinesterase produced by a strain of Aspergillus niger. Current Microbiology, 28, 193–196. DOI: 10.1007/BF01575960. http://dx.doi.org/10.1007/BF0157596010.1007/BF01575960Suche in Google Scholar

[13] Mangos, T. J., & Haas, M. J. (1997). A spectrophotometric assay for the enzymatic demethoxylation of pectins and the determination of pectinesterase activity. Analytical Biochemistry, 244, 357–366. DOI: 10.1006/abio.1996.9908. http://dx.doi.org/10.1006/abio.1996.990810.1006/abio.1996.9908Suche in Google Scholar

[14] Mantovani, C. F., Geimba, M. P., & Brandelli, A. (2005). Enzymatic clarification of fruit juices by fungal pectin lyase. Food Biotechnology, 19, 173–181. DOI: 10.1080/089054305003162 84. http://dx.doi.org/10.1080/08905430500316284Suche in Google Scholar

[15] Miedes, E., & Lorences, E. P. (2006). Changes in cell wall pectin and pectinase activity in apple and tomato fruits during Penicillium expansum infection. Journal of the Science of Food and Agriculture, 86, 1359–1364. DOI: 10.1002/jsfa.2522. http://dx.doi.org/10.1002/jsfa.252210.1002/jsfa.2522Suche in Google Scholar

[16] Miller, G. L. (1959). Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry, 31, 426–428. DOI: 10.1021/ac60147a030. http://dx.doi.org/10.1021/ac60147a03010.1021/ac60147a030Suche in Google Scholar

[17] Mutlu, M., Sarioǧlu, K., Demir, N., Ercan, M. T., & Acar, J. (1999). The use of commercial pectinase in fruit juice industry. Part I: viscosimetric determination of enzyme activity. Journal of Food Engineering, 41, 147–150. DOI: 10.1016/ S0260-8774(99)000886. http://dx.doi.org/10.1016/S0260-8774(99)00088-610.1016/S0260-8774(99)00088-6Suche in Google Scholar

[18] Pires, T. C. R., & Finardi-Filho, F. (2005). Extraction and assay of pectic enzymes from Peruvian carrot (Arracacia xanthorriza Bancroft.). Food Chemistry, 89, 85–92. DOI: 10.1016/j.foodchem.2004.02.023. http://dx.doi.org/10.1016/j.foodchem.2004.02.02310.1016/j.foodchem.2004.02.023Suche in Google Scholar

[19] Polydera, A. C., Galanou, E., Stoforos, N. G., & Taoukis, P. S. (2004). Inactivation kinetics of pectin methylesterase of greek Navel orange juice as a function of high hydrostatic pressure and temperature process conditions. Journal of Food Engineering, 62, 291–298. DOI: 10.1016/S0260-8774(03)00242-5. http://dx.doi.org/10.1016/S0260-8774(03)00242-510.1016/S0260-8774(03)00242-5Suche in Google Scholar

[20] Rouse, A. H., & Atkins, C. D. (1952). Heat inactivation of pectinesterase in citrus juices. Food Technology, 6, 291–294. Suche in Google Scholar

[21] Savary, B. J., & Nuñez, A. (2003). Gas chromatographymass spectrometry method for determining the methanol and acetic acid contents of pectin using headspace solidphase microextraction and stable isotope dilution. Journal of Chromatography A, 1017, 151–159. DOI: 10.1016/S0021-9673(03)01293-7. http://dx.doi.org/10.1016/S0021-9673(03)01293-710.1016/S0021-9673(03)01293-7Suche in Google Scholar

[22] Silva, D., Tokuioshi, K., Martins, E. S., Da Silva, R., & Gomes, E. (2005). Production of pectinase by solid-state fermentation with Penicillium viridicatum RFC3. Process Biochemistry, 40, 2885–2889. DOI: 10.1016/j.procbio.2005.01.008. http://dx.doi.org/10.1016/j.procbio.2005.01.00810.1016/j.procbio.2005.01.008Suche in Google Scholar

[23] Spagna, G., Barbagallo, R. N., & Ingallinera, B. (2003). A specific method for determination of pectin esterase in blood oranges. Enzyme and Microbial Technology, 32, 174–177. DOI: 10.1016/S0141-0229(02)00271-5. http://dx.doi.org/10.1016/S0141-0229(02)00271-510.1016/S0141-0229(02)00271-5Suche in Google Scholar

[24] Spagnuolo, M., Crecchio, C., Pizzigallo, M. D. R., & Ruggiero, P. (1999). Fractionation of sugar beet pulp into pectin, cellulose, and arabinose by arabinases combined with ultrafiltration. Biotechnology and Bioengineering, 64, 685–691. DOI: 10.1002/(SICI)1097-0290(19990920)64:6<685::AID-BIT7> 3.0.CO;2-E. http://dx.doi.org/10.1002/(SICI)1097-0290(19990920)64:6<685::AID-BIT7>3.0.CO;2-E10.1002/(SICI)1097-0290(19990920)64:6<685::AID-BIT7>3.0.CO;2-ESuche in Google Scholar

[25] Wilińska, A., de Figueiredo Rodrigues, A. S., Bryjak, J., & Polakovič, M. (2008). Thermal inactivation of exogenous pectin methylesterase in apple and cloudberry juices. Journal of Food Engineering, 85, 459–465. DOI: 10.1016/j.jfoodeng. 2007.08.009. http://dx.doi.org/10.1016/j.jfoodeng.2007.08.00910.1016/j.jfoodeng.2007.08.009Suche in Google Scholar

Published Online: 2009-10-8
Published in Print: 2009-12-1

© 2009 Institute of Chemistry, Slovak Academy of Sciences

Artikel in diesem Heft

  1. Utilization of solid phase spectrophotometry for the determination of trace amounts of copper using 5-(2-benzothiazolylazo)-8-hydroxyquinoline
  2. Analysis of spectinomycin in fermentation broth by reversed-phase chromatography
  3. An amperometric sensor for uric acid based on ordered mesoporous carbon-modified pyrolytic graphite electrode
  4. Utility of π-acceptor reagents for spectrophotometric determination of sulphonamide drugs via charge-transfer complex formation
  5. A graph theoretical approach to the effect of mutation on the flexibility of the DNA binding domain of p53 protein
  6. Aquaculture by-product: a source of proteolytic enzymes for detergent additives
  7. Effect of anthraquinone on brightness value and crystalline structure of pulp during soda processes
  8. Selection of a method for determination of activity of pectinolytic enzymes in berry fruit materials
  9. Study on polymeric micelles of poly(γ-benzyl l-glutamate)-graft-poly(ethylene glycol) copolymer and its mixtures with poly(γ-benzyl l-glutamate) homopolymer in ethanol
  10. Synthesis and characterization of mesoporous molecular sieves
  11. Growth mechanism and characterization of ZnO nano-tubes synthesized using the hydrothermal-etching method
  12. Novel use of silicon nanocrystals and nanodiamonds in biology
  13. Fluoride anion sensing using colorimetric reagents containing binaphthyl moiety and urea binding site
  14. Spectrophotometric methods for sertraline hydrochloride and/or clidinium bromide determination in bulk and pharmaceutical preparations
  15. Study of physicochemical properties-antitubercular activity relationship of naphthalene-1,4-dione analogs: A QSAR approach
  16. Spectroscopic study of protonation of oligonucleotides containing adenine and cytosine
  17. Rheological properties of doughs with buckwheat and quinoa additives
  18. Synthesis and isolation of methyl bismuth cysteine and its definitive identification by high resolution mass spectrometry
Heruntergeladen am 30.10.2025 von https://www.degruyterbrill.com/document/doi/10.2478/s11696-009-0065-z/html
Button zum nach oben scrollen