Startseite Study on polymeric micelles of poly(γ-benzyl l-glutamate)-graft-poly(ethylene glycol) copolymer and its mixtures with poly(γ-benzyl l-glutamate) homopolymer in ethanol
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Study on polymeric micelles of poly(γ-benzyl l-glutamate)-graft-poly(ethylene glycol) copolymer and its mixtures with poly(γ-benzyl l-glutamate) homopolymer in ethanol

  • Guo-Quan Zhu EMAIL logo
Veröffentlicht/Copyright: 8. Oktober 2009
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Poly(γ-benzyl l-glutamate)-graft-poly(ethylene glycol) (PBLG-graft-PEG) copolymer was synthesized by the ester exchange reaction of the PBLG homopolymer with PEG. NMR spectroscopy was used to confirm the composition of the PBLG-graft-PEG copolymer. FTIR spectroscopy was used to characterize the chain conformation of polypeptide segments in the PBLG-graft-PEG copolymer in solid state. The self-assembly behavior of PBLG-graft-PEG and its mixtures with PBLG in ethanol were investigated by transmission electron microscopy (TEM) and viscometry. Experimental results showed that the PBLG-graft-PEG copolymer can self-assemble to form polymeric micelles with a core-shell structure of a thin shuttle-like shape. The introduction of the PBLG homopolymer into the mixed system not only decreases the critical micelle concentration (CMC) but also changes the morphology of the micelles from their shuttle-like shape to cylindrical shape. The effects of test temperature on the critical micelle concentration of PBLG-graft-PEG were also studied.

[1] Abe, A., & Yamazaki, T. (1989). Deuterium NMR analysis of poly(γ-benzyl l-glutamate) in the lyotropic liquid-crystalline state: orientational order of the α-helical backbone and conformation of the pendant side chain. Macromolecules, 22, 2138–2145. DOI: 10.1021/ma00195a023. http://dx.doi.org/10.1021/ma00195a02310.1021/ma00195a023Suche in Google Scholar

[2] Chen, T., Lin, S., Lin, J., & Zhang, L. (2007). Effect of electrical field on polypeptide phase behavior involving a conformationally coupled anisotropic-isotropic transition. Polymer, 48, 2056–2063. DOI: 10.1016/j.polymer.2007.02.001. http://dx.doi.org/10.1016/j.polymer.2007.02.00110.1016/j.polymer.2007.02.001Suche in Google Scholar

[3] Cheon, J.-B., Jeong, Y.-I., & Cho, C.-S. (1999). Effects of temperature on diblock copolymer micelle composed of poly(γ-benzyl l-glutamate) and poly(N-isopropylacrylamide). Polymer, 40, 2041–2050. DOI: 10.1016/S0032-3861(98)00432-7. http://dx.doi.org/10.1016/S0032-3861(98)00432-710.1016/S0032-3861(98)00432-7Suche in Google Scholar

[4] Cho, C.-S., Cheon, J.-B., Jeong, Y.-I., Kim, I.-S., Kim, S.-H., & Akaike, T. (1997). Novel core-shell type thermo-sensitive nanoparticles composed of poly(γ-benzyl l-glutamate) as the core and poly(N-isopropylacrylamide) as the shell. Macromolecular Rapid Communications, 18, 361–369. DOI: 10.1002/marc.1997.030180502. http://dx.doi.org/10.1002/marc.1997.03018050210.1002/marc.1997.030180502Suche in Google Scholar

[5] Cho, C.-S., Jeong, Y.-I., Kim, S.-H., Nah, J.-W., Kubota, M., & Komoto, T. (2000). Thermoplastic hydrogel based on hexablock copolymer composed of poly(γ-benzyl l-glutamate) and poly(ethylene oxide). Polymer, 41, 5185–5193. DOI: 10.1016/S0032-3861(99)00746-6. http://dx.doi.org/10.1016/S0032-3861(99)00746-610.1016/S0032-3861(99)00746-6Suche in Google Scholar

[6] Cho, C.-S., Nah, J.-W., Jeong, Y.-I., Cheon, J.-B., Asayama, S., Ise, H., & Akaike, T. (1999). Conformational transition of nanoparticles composed of poly(γ-benzyl l-glutamate) as the core and poly(ethylene oxide) as the shell. Polymer, 40, 6769–6775. DOI: 10.1016/S0032-3861(99)00007-5. http://dx.doi.org/10.1016/S0032-3861(99)00007-510.1016/S0032-3861(99)00007-5Suche in Google Scholar

[7] Gao, Z., Desjardins, A., & Eisenberg, A. (1992). Solubilization equilibria of water in nonaqueous solutions of block ionomer reverse micelles: an NMR study. Macromolecules, 25, 1300–1303. DOI: 10.1021/ma00030a015. http://dx.doi.org/10.1021/ma00030a01510.1021/ma00030a015Suche in Google Scholar

[8] Harada, A., Cammas, S., & Kataoka, K. (1996). Stabilized α-helix structure of poly(l-lysine)-block-poly(ethylene glycol) in aqueous medium through supramolecular assembly. Macromolecules, 29, 6183–6188. DOI: 10.1021/ma960487p. http://dx.doi.org/10.1021/ma960487p10.1021/ma960487pSuche in Google Scholar

[9] Harada, A., & Kataoka, K. (1995). Formation of polyion complex micelles in an aqueous milieu from a pair of oppositely-charged block copolymers with poly(ethylene glycol) segments. Macromolecules, 28, 5294–5299. DOI: 10.1021/ma00119a019. http://dx.doi.org/10.1021/ma00119a01910.1021/ma00119a019Suche in Google Scholar

[10] Higashi, N., Kawahara, J., & Niwa, M. (2005). Preparation of helical peptide monolayer-coated gold nanoparticles. Journal of Colloid and Interface Science, 288, 83–87. DOI: 10.1016/j.jcis.2005.02.086. http://dx.doi.org/10.1016/j.jcis.2005.02.08610.1016/j.jcis.2005.02.086Suche in Google Scholar PubMed

[11] Inomata, K., Ohara, N., Shimizu, H., & Nose, T. (1998). Phase behaviour of rod with flexible side chains/coil/solvent systems: poly(α-l-glutamate) with tri(ethylene glycol) side chains, poly(ethylene glycol), and dimethylformamide. Polymer, 39, 3379–3386. DOI: 10.1016/S0032-3861(97)10037-4. http://dx.doi.org/10.1016/S0032-3861(97)10037-410.1016/S0032-3861(97)10037-4Suche in Google Scholar

[12] Inomata, K., Shimizu, H., & Nose, T. (2000). Phase equilibrium studies on rod/solvent and rod/coil/solvent systems containing poly(α-l-glutamate) having oligo(ethylene glycol) side chains. Journal of Polymer Science Part B: Polymer Physics, 38, 1331–1340. DOI: 10.1002/(SICI)1099-0488(20000515)38:10<1331::AID-POLB90>3.0.CO;2-F. http://dx.doi.org/10.1002/(SICI)1099-0488(20000515)38:10<1331::AID-POLB90>3.0.CO;2-F10.1002/(SICI)1099-0488(20000515)38:10<1331::AID-POLB90>3.0.CO;2-FSuche in Google Scholar

[13] Jeong, Y.-I., Nah, J.-W., Lee, H.-C., Kim, S.-H., & Cho, C.-S. (1999). Adriamycin release from flower-type polymeric micelle based on star-block copolymer composed of poly(γ-benzyl l-glutamate) as the hydrophobic part and poly(ethylene oxide) as the hydrophilic part. International Journal of Pharmaceutics, 188, 49–58. DOI: 10.1016/S0378-5173(99)00202-1. http://dx.doi.org/10.1016/S0378-5173(99)00202-110.1016/S0378-5173(99)00202-1Suche in Google Scholar

[14] Kwon, G., Naito, M., Yokoyama, M., Okano, T., Sakurai, Y., & Kataoka, K. (1993). Micelles based on AB block copolymers of poly(ethylene oxide) and poly(β-benzyl l-aspartate). Langmuir, 9, 945–949. DOI: 10.1021/la00028a012. http://dx.doi.org/10.1021/la00028a01210.1021/la00028a012Suche in Google Scholar

[15] Li, T., Lin, J., Chen, T., & Zhang, S. (2006). Polymeric micelles formed by polypeptide graft copolymer and its mixtures with polypeptide block copolymer. Polymer, 47, 4485–4489. DOI: 10.1016/j.polymer.2006.04.011. http://dx.doi.org/10.1016/j.polymer.2006.04.01110.1016/j.polymer.2006.04.011Suche in Google Scholar

[16] Lin, J., Abe, A., Furuya, H., & Okamoto, S. (1996). Liquid crystal formation coupled with the coil-helix transition in the ternary system poly(γ-benzyl l-glutamate)/dichloroacetic acid/dichloroethane. Macromolecules, 29, 2584–2589. DOI: 10.1021/ma951026r. http://dx.doi.org/10.1021/ma951026r10.1021/ma951026rSuche in Google Scholar

[17] Lin, J., Liu, N., Chen, J., & Zhou, D. (2000). Conformational changes coupled with the isotropic-anisotropic transition Part 1. Experimental phenomena and theoretical considerations. Polymer, 41, 6189–6194. DOI: 10.1016/S0032-3861(99)00848-4. http://dx.doi.org/10.1016/S0032-3861(99)00848-410.1016/S0032-3861(99)00848-4Suche in Google Scholar

[18] Lin, J., Zhang, S., Chen, T., Lin, S., & Jin, H. (2007). Micelle formation and drug release behavior of polypeptide graft copolymer and its mixture with polypeptide block copolymer. International Journal of Pharmaceutics, 336, 49–57. DOI: 10.1016/j.ijpharm.2006.11.026. http://dx.doi.org/10.1016/j.ijpharm.2006.11.02610.1016/j.ijpharm.2006.11.026Suche in Google Scholar

[19] Lin, J., Zhang, S., Chen, T., Liu, C., Lin, S., & Tian, X. (2006). Calcium phosphate cement reinforced by polypeptide copolymers. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 76B, 432–439. DOI: 10.1002/jbm.b.30392. http://dx.doi.org/10.1002/jbm.b.3039210.1002/jbm.b.30392Suche in Google Scholar

[20] Lin, J., Zhu, G., Zhu, X., Lin, S., Nose, T., & Ding, W. (2008). Aggregate structure change induced by intramolecular helix-coil transition. Polymer, 49, 1132–1136. DOI: 10.1016/j.polymer.2008.01.021. http://dx.doi.org/10.1016/j.polymer.2008.01.02110.1016/j.polymer.2008.01.021Suche in Google Scholar

[21] Lin, J., Zhu, J., Chen, T., Lin, S., Cai, C., Zhang, L., Zhuang, Y., & Wang, X.-S. (2009). Drug releasing behavior of hybrid micelles containing polypeptide triblock copolymer. Biomaterials, 30, 108–117. DOI: 10.1016/j.biomaterials.2008.09.010. http://dx.doi.org/10.1016/j.biomaterials.2008.09.01010.1016/j.biomaterials.2008.09.010Suche in Google Scholar

[22] Liu, N., Lin, J. P., Chen, T., Chen, J. D., Zhou, D. F., & Li, L. (2001). Helix-coil conformation change accompanied by anisotropic transition. Polymer Journal, 33, 898–901. DOI: 10.1295/polymj.33.898. http://dx.doi.org/10.1295/polymj.33.89810.1295/polymj.33.898Suche in Google Scholar

[23] Markland, P., Amidon, G. L., & Yang, V. C. (1999). Modified polypeptides containing γ-benzyl glutamic acid as drug delivery platforms. International Journal of Pharmaceutics, 178, 183–192. DOI: 10.1016/S0378-5173(98)00373-1. http://dx.doi.org/10.1016/S0378-5173(98)00373-110.1016/S0378-5173(98)00373-1Suche in Google Scholar

[24] Moffitt, M., & Eisenberg, A. (1997). Scaling relations and size control of block ionomer microreactors containing different metal ions. Macromolecules, 30, 4363–4373. DOI: 10.1021/ma961577x. http://dx.doi.org/10.1021/ma961577x10.1021/ma961577xSuche in Google Scholar

[25] Nah, J.-W., Jeong, Y.-I., & Cho, C.-S. (1998). Clonazepam release from core-shell type nanoparticles composed of poly(γ-benzyl l-glutamate) as the hydrophobic part and poly(ethylene oxide) as the hydrophilic part. Journal of Polymer Science Part B: Polymer Physics, 36, 415–423. DOI: 10.1002/(SICI)1099-0488(199802)36:3<415::AID-POLB3>3.0.CO;2-Q. http://dx.doi.org/10.1002/(SICI)1099-0488(199802)36:3<415::AID-POLB3>3.0.CO;2-Q10.1002/(SICI)1099-0488(199802)36:3<415::AID-POLB3>3.0.CO;2-QSuche in Google Scholar

[26] Oh, I., Lee, K., Kwon, H.-Y., Lee, Y.-B., Shin, S.-C., Cho, C.-S., & Kim, C.-K. (1999). Release of adriamycin from poly(γ-benzyl-l-glutamate)/poly(ethylene oxide) nanoparticles. International Journal of Pharmaceutics, 181, 107–115. DOI: 10.1016/S0378-5173(99)00012-5. http://dx.doi.org/10.1016/S0378-5173(99)00012-510.1016/S0378-5173(99)00012-5Suche in Google Scholar

[27] Price, C., Kendall, K. D., Stubbersfield, R. B., & Wright, B. (1983). Thermodynamics of micellization of a polystyrene-b-poly( ethylene/propylene) block copolymer in n-decane. Polymer Communications, 24, 326–328. Suche in Google Scholar

[28] Rolland, A., O’Mullane, J., Goddard, P., Brookman, L., & Petrak, K. (1992). New macromolecular carriers for drugs. I. Preparation and characterization of poly(oxyethylene-b-isoprene-b-oxyethylene) block copolymer aggregates. Journal of Applied Polymer Science, 44, 1195–1203. DOI: 10.1002/app.1992.070440709. http://dx.doi.org/10.1002/app.1992.07044070910.1002/app.1992.070440709Suche in Google Scholar

[29] Tang, D. M., Lin, J. P., Lin, S. L., Zhang, S. N., Chen, T., & Tian, X. H. (2004). Self-assembly of poly(γ-benzyl l-glutamate)-graft-poly(ethylene glycol) and its mixtures with poly(γ-benzyl L-glutamate) homopolymer. Macromolecular Rapid Communications, 25, 1241–1246. DOI: 10.1002/marc.200400100. http://dx.doi.org/10.1002/marc.20040010010.1002/marc.200400100Suche in Google Scholar

[30] Xu, Z., Feng, L., Ji, J., Cheng, S., Chen, Y., & Yi, C. (1998). The micellization of amphiphilic graft copolymer PMMA-g-PEO in toluene. European Polymer Journal, 34, 1499–1504. DOI: 10.1016/S0014-3057(97)00279-6. http://dx.doi.org/10.1016/S0014-3057(97)00234-610.1016/S0014-3057(97)00279-6Suche in Google Scholar

[31] Zhang, W., Shi, L., An, Y., Wu, K., Gao, L. Liu, Z., Ma, R., Meng, Q., Zhao, C., & He, B. (2004). Adsorption of poly(4-vinyl pyridine) unimers into polystyrene-block-poly(acrylic acid) micelles in ethanol due to hydrogen bonding. Macromolecules, 37, 2924–2929. DOI: 10.1021/ma0499775. http://dx.doi.org/10.1021/ma049977510.1021/ma0499775Suche in Google Scholar

[32] Zhong, X. F., Varshney, S. K., & Eisenberg, A. (1992). Critical micelle lengths for ionic blocks in solutions of polystyrene-b-poly( sodium acrylate) ionomers. Macromolecules, 25, 7160–7167. DOI: 10.1021/ma00052a014. http://dx.doi.org/10.1021/ma00052a01410.1021/ma00052a014Suche in Google Scholar

Published Online: 2009-10-8
Published in Print: 2009-12-1

© 2009 Institute of Chemistry, Slovak Academy of Sciences

Artikel in diesem Heft

  1. Utilization of solid phase spectrophotometry for the determination of trace amounts of copper using 5-(2-benzothiazolylazo)-8-hydroxyquinoline
  2. Analysis of spectinomycin in fermentation broth by reversed-phase chromatography
  3. An amperometric sensor for uric acid based on ordered mesoporous carbon-modified pyrolytic graphite electrode
  4. Utility of π-acceptor reagents for spectrophotometric determination of sulphonamide drugs via charge-transfer complex formation
  5. A graph theoretical approach to the effect of mutation on the flexibility of the DNA binding domain of p53 protein
  6. Aquaculture by-product: a source of proteolytic enzymes for detergent additives
  7. Effect of anthraquinone on brightness value and crystalline structure of pulp during soda processes
  8. Selection of a method for determination of activity of pectinolytic enzymes in berry fruit materials
  9. Study on polymeric micelles of poly(γ-benzyl l-glutamate)-graft-poly(ethylene glycol) copolymer and its mixtures with poly(γ-benzyl l-glutamate) homopolymer in ethanol
  10. Synthesis and characterization of mesoporous molecular sieves
  11. Growth mechanism and characterization of ZnO nano-tubes synthesized using the hydrothermal-etching method
  12. Novel use of silicon nanocrystals and nanodiamonds in biology
  13. Fluoride anion sensing using colorimetric reagents containing binaphthyl moiety and urea binding site
  14. Spectrophotometric methods for sertraline hydrochloride and/or clidinium bromide determination in bulk and pharmaceutical preparations
  15. Study of physicochemical properties-antitubercular activity relationship of naphthalene-1,4-dione analogs: A QSAR approach
  16. Spectroscopic study of protonation of oligonucleotides containing adenine and cytosine
  17. Rheological properties of doughs with buckwheat and quinoa additives
  18. Synthesis and isolation of methyl bismuth cysteine and its definitive identification by high resolution mass spectrometry
Heruntergeladen am 27.11.2025 von https://www.degruyterbrill.com/document/doi/10.2478/s11696-009-0074-y/pdf?lang=de
Button zum nach oben scrollen