Home Immobilization of porphyrins in poly(hydroxymethylsiloxane)
Article
Licensed
Unlicensed Requires Authentication

Immobilization of porphyrins in poly(hydroxymethylsiloxane)

  • Stanislav Šabata EMAIL logo , Jiří Hetflejš , Renata Rychtáriková , Gabriela Kuncová , Kamil Lang and Pavel Kubát
Published/Copyright: May 27, 2009
Become an author with De Gruyter Brill

Abstract

Three tetracationic porphyrins differing in the position of charged nitrogen atoms on the peripheral substituents — 5,10,15,20-tetrakis(N-methylpyridinium-4-yl)porphyrin (TMPyP4), 5,10,15,20-tetrakis(N-methylpyridinium-2-yl)porphyrin (TMPyP2), 5,10,15,20-tetrakis(4-trimethylammoniophenyl) porphyrin (TMAPP), and hydrophobic 5,10,15,20-tetraphenylporphyrin (TPP), were immobilized by adsorption and encapsulation in poly(hydroxymethylsiloxane) (PHOMS). The so prepared porphyrin-PHOMS composites were characterized by porosimetry, scanning electron microscopy, fluorescence and diffuse reflectance UV-VIS spectroscopy. It was found that porphyrins are immobilized in the PHOMS matrix in the free base monomer form Their irradiation produced singlet oxygen O2(1Δg) with the lifetime of 10–30 μs.

[1] Ballesteros, B., Campidelli, S., de la Torre, G., Ehli, C., Guldi, D. M., Prato, M., & Torres, T. (2007). Synthesis, characterization and photophysical properties of a SWNT-phtalocyanine hybrid. Chemical Communications, 2007, 2950–2952. DOI: 10.1039/b702819a. 10.1039/b702819aSearch in Google Scholar

[2] Bonnett, R. (1995). Photosenzitizers of the porphyrin and phtalocyanine series for photodynamic therapy. Chemical Society Reviews, 24, 19–33. DOI: 10.1039/CS9952400019. http://dx.doi.org/10.1039/cs995240001910.1039/cs9952400019Search in Google Scholar

[3] Bonnett, R., Krysteva, M. A., Lalov, I. G., & Artarsky, S. V. (2006). Water disinfection using photosensitizers immobilized on chitosan. Water Research, 40, 1269–1275. DOI: 10.1016/j.watres.2006.01.014. http://dx.doi.org/10.1016/j.watres.2006.01.01410.1016/j.watres.2006.01.014Search in Google Scholar

[4] Brennan, J. D. (2007). Biofriendly sol-gel processing for the entrapment of soluble and membrane-bound proteins. Toward novel solid-phase assays for high throughput screening. Accounts of Chemical Research, 40, 827–835. DOI: 10.1021/ar6000268. http://dx.doi.org/10.1021/ar600026810.1021/ar6000268Search in Google Scholar

[5] Chirvony, V., Bolotin, V., Matveeva, E., & Parkhutik, V. (2006). Fluorescence and 1O2 generation properties of porphyrin molecules immobilized in oxidized nano-porous silicon matrix. Journal of Photochemistry and Photobiology A: Chemistry, 181, 106–113. DOI: 10.1016j/j.jphotochem.2005.11.008. http://dx.doi.org/10.1016/j.jphotochem.2005.11.00810.1016/j.jphotochem.2005.11.008Search in Google Scholar

[6] Chirvony, V. S., Bolotin, V. L., Overejo, J., Matveeva, E. S., Dyhagarov, D. M., Allbela, J., & Parkhutik, V. (2007). Luminiscence properties of the porphyrin/porous silicon composites. Physica Status Solidi A: Applications and Materials Science, 204, 1523–1527. DOI: 10.1002/pssa.200674414. http://dx.doi.org/10.1002/pssa.20067441410.1002/pssa.200674414Search in Google Scholar

[7] Dargiewicz, J., Makarska, M., & Radzki, S. (2002). Spectroscopic characterization of water soluble cationic porphyrins in sol-gel matrices and coatings. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 208, 159–165. DOI: 10.1016/S0927-7757(02)00142-5. http://dx.doi.org/10.1016/S0927-7757(02)00142-510.1016/S0927-7757(02)00142-5Search in Google Scholar

[8] DeRosa, M., & Crutchley, R. J. (2002). Photosensitized singlet oxygen and its applications. Coordination Chemistry Reviews, 233–234, 351–371. DOI: 10.1016/S0010-8545(02)00034-6 http://dx.doi.org/10.1016/S0010-8545(02)00034-610.1016/S0010-8545(02)00034-6Search in Google Scholar

[9] De la Luz, V., García-Sánchez, M. A., & Campero, A. (2007). Luminiscent porphyrinosilica obtained by the sol gel-method. Journal of Non-Crystalline Solids, 353, 2143–2149. DOI: 10.1016/j.jnoncrysol.2007.03.010. http://dx.doi.org/10.1016/j.jnoncrysol.2007.03.01010.1016/j.jnoncrysol.2007.03.010Search in Google Scholar

[10] Faust, D., Funken, K.-H., Horneck, G., Milow, B., Ortner, J., Sattlegger, M., Schäfer, M., & Schmitz, C. (1999). Immobilized photosensitizers for solar photochemical applications. Solar Energy, 65, 71–74. DOI: 10.1016/S0038-092X(98)00099-1. http://dx.doi.org/10.1016/S0038-092X(98)00099-110.1016/S0038-092X(98)00099-1Search in Google Scholar

[11] García-Sánchez, M. A., Tello, S. R., Sosa, F. R., & Campero, A. (2006). Fluorescent porphyirins trapped in monolithic SiO2 gels. Journal of Sol-Gel Science and Technology, 37, 93–97. DOI: 10.1007/s10971-006-6425-z. http://dx.doi.org/10.1007/s10971-006-6425-z10.1007/s10971-006-6425-zSearch in Google Scholar

[12] Guldi, D. M., Taieb, H., Rahman, G. M. A., Tagmadarchis, N., & Prato, H. (2005). Novel photoactive single walled carbon-nanotube-porphyrin polymer wraps: efiicient and long-lived intracomplex charge separation. Advanced Materials, 17, 871–875. DOI: 10.1002/adma.200401621. http://dx.doi.org/10.1002/adma.20040064110.1002/adma.200401621Search in Google Scholar

[13] Hetflejs, J., Kuncova, G., Blechta, V., & Brus, J. (2006). Alternative synthesis of poly(hydroxymethylsiloxane) for lipase immobilization and use of the adsorbates as esterification biocatalysts. Journal of Sol-Gel Science and Technology, 38, 121–131. DOI: 10.1007/s10971-006-7115-6. http://dx.doi.org/10.1007/s10971-006-7115-610.1007/s10971-006-7115-6Search in Google Scholar

[14] Jori, G., & Brown, S. B. (2004). Photosensitized inactivation of microorganisms. Photochemical & Photobiological Sciences, 3, 403–405. DOI: 10.1039/b311904c. http://dx.doi.org/10.1039/b311904c10.1039/b311904cSearch in Google Scholar PubMed

[15] Julliard, M. (1997). Immobilized photosensitizers and photocatalysis. In M. Chanon (Ed.), Homogeneous photocatalysis, Chapter 7 (pp. 222–258). New York: Wiley. Search in Google Scholar

[16] Krouit, M., Granet, R., Branland, P., Verneuil, B., & Krausz, P. (2006). New photoantimicrobial films composed of porphyrinated lipophilic cellulose esters. Bioorganic & Medicinal Chemistry Letters, 16, 1651–1655. DOI: 10.1016/j.bmel.2005.12.008. http://dx.doi.org/10.1016/j.bmcl.2005.12.008Search in Google Scholar

[17] Lang, K., Bezdička, P., Bourdelande, J. L., Hernando, J., Jirka, I., Káfuńková, E., Kovanda, F., Kubát, P., Mosinger, J., & Wagnerová, D.M. (2007). Layered double hydroxides with intercalated porphyrines as photofunctional materials. Subtile structural changes modify singlet oxygen production. Chemistry of Materials, 19, 3822–3829. DOI: 10.1021/cm070351d. http://dx.doi.org/10.1021/cm070351d10.1021/cm070351dSearch in Google Scholar

[18] Lobnik, A., & Wolbeis, O. S. (2001). Probing the polarity of sol-gels and ormosils via the absorption of Nile Red. Journal of Sol-Gel Science and Technology, 20, 301–311. DOI: 10.1023/A:1008734320809. http://dx.doi.org/10.1023/A:100873432080910.1023/A:1008734320809Search in Google Scholar

[19] Moreno, E. M., & Levy, D. (2000). Role of the conomer GLYMO in Ormosil as reflected by nile red spectroscopy. Chemistry of Materials, 12, 2334–2340. DOI: 10.1021/cm001048e. http://dx.doi.org/10.1021/cm001048e10.1021/cm001048eSearch in Google Scholar

[20] Mosinger, J., Jirsák, O., Kubát, P., Lang, K., & Mosinger, B.,Jr. (2007). Bactericidal nanofabric based on photoproduction of singlet oxygen. Journal of Material Chemistry, 17, 164–166. DOI: 10.1039/b614617a. http://dx.doi.org/10.1039/b614617a10.1039/B614617ASearch in Google Scholar

[21] Ou, Z., Yao, H., & Kimura, K. (2007). Preparation and optical properties of organic nanoparticles of porphyrin without self-aggregation. Journal of Photochemistry and Photobiology A: Chemistry, 189, 7–14. DOI: 10.1016/j.jphotochem.2006.12.042. http://dx.doi.org/10.1016/j.jphotochem.2006.12.04210.1016/j.jphotochem.2006.12.042Search in Google Scholar

[22] Redmond, R. W., & Gamlin, J. N. (1999). A compilation of singlet oxygen yields from biologically relevant molecules. Photochemistry and Photobiology, 70, 391–475. DOI: 10.1111/j.1751-1097.1999.tb08240.x. 10.1111/j.1751-1097.1999.tb08240.xSearch in Google Scholar

[23] Sherrill, J., Michielsen, S., & Stojiljkovic, I. (2003). Grafting of light-activated antimicrobial materials to nylon films. Journal of Polymer Science: Part A: Polymer Chemistry, 41, 41–47. DOI: 10.1002/pola.10556. http://dx.doi.org/10.1002/pola.1055610.1002/pola.10556Search in Google Scholar

[24] Wahlen, J., De Vos, D. E., Jacobs, P. A., & Alsters, P. L. (2004). Solid materials as sources of synthetically useful singlet oxygen. Advanced Synthesis & Catalysis, 346, 152–164. DOI: 10.1002/adsc.200303224. http://dx.doi.org/10.1002/adsc.20030322410.1002/adsc.200303224Search in Google Scholar

[25] Wróbel, D., Hanyż, I., Bartkowiak, R., & Ion, R. M. (1998). Fluorescence and time-resolved delayed luminiscence of porphyrins in organic solvents and polymer matrices. Journal of Fluorescence, 8, 191–199. DOI: 10.1023/A:1022524814908. http://dx.doi.org/10.1023/A:102252481490810.1023/A:1022524814908Search in Google Scholar

[26] Yoshida, A., Kakegawa, N., & Ogawa, M. (2003). Adsorption of cationic porphyrin onto mesoporous silicas. Research on Chemical Intermediates, 29, 721–731. DOI: 10.1163/156856703322601735. http://dx.doi.org/10.1163/15685670332260173510.1163/156856703322601735Search in Google Scholar

[27] Yusoff, N. H., Salleh, M. M., & Yahaya, M. (2008). Fluorescence gas sensor using TiO2 nanoparticles coated with porphyrin dye thin films. Solid State Science and Technology, 16, 63–74 Search in Google Scholar

Published Online: 2009-5-27
Published in Print: 2009-8-1

© 2009 Institute of Chemistry, Slovak Academy of Sciences

Articles in the same Issue

  1. GC-MS analyses of flower ether extracts of Prunus domestica L. and Prunus padus L. (Rosaceae)
  2. A novel kinetic-spectrophotometric method for determination of nitrites in water
  3. Characterization of recombinant antibodies for detection of TNT and its derivatives
  4. Improvements in the selection of real components forming a substitute mixture for petroleum fractions
  5. Chemical evaluation of seeded fruit biomass of oil pumpkin (Cucurbita pepo L. var. Styriaca)
  6. Application of 31P NMR for added polyphosphate determination in pork meat
  7. Estimation of composition, coordination model, and stability constant of some metal/phosphate complexes using spectral and potentiometric measurements
  8. Synthesis, characterization, and anti-tumor activities of some transition metal(II) complexes with podophyllic acid hydrazide
  9. Artificial neural network prediction of steric hindrance parameter of polymers
  10. Immobilization of porphyrins in poly(hydroxymethylsiloxane)
  11. Preparation and characterization of porous cordierite for potential use in cellular ceramics
  12. Characterization of NiFe2O4 nanoparticles synthesized by various methods
  13. QSAR analysis of 1,3-diaryl-2-propen-1-ones and their indole analogs for designing potent antibacterial agents
  14. QSAR study of 2,4-disubstituted phenoxyacetic acid derivatives as a CRTh2 receptor antagonists
  15. Comparison of isothermal and non-isothermal chemiluminescence and differential scanning calorimetry experiments with benzoyl peroxide
  16. Wettability of plasma-polymerized vinyltriethoxysilane film
  17. A spectrofluorimetric method for the determination of acitretin in pharmaceuticals
  18. Fatty acid profile of Trichosanthes kirilowii Maxim. seed oil
  19. Determination of the enthalpy of fusion of K3TaO2F4 and KTaF6
Downloaded on 27.11.2025 from https://www.degruyterbrill.com/document/doi/10.2478/s11696-009-0037-3/pdf?lang=en
Scroll to top button