Home QSAR study of 2,4-disubstituted phenoxyacetic acid derivatives as a CRTh2 receptor antagonists
Article
Licensed
Unlicensed Requires Authentication

QSAR study of 2,4-disubstituted phenoxyacetic acid derivatives as a CRTh2 receptor antagonists

  • Abhishek Jain EMAIL logo , Veerasamy Ravichandran , Rajesh Singh , Vishnukanth Mourya and Ram Agrawal
Published/Copyright: May 27, 2009
Become an author with De Gruyter Brill

Abstract

In pursuit of better CRTh2 receptor antagonist agents, QSAR studies were performed on a series of 2,4-disubstituted phenoxyacetic acid derivatives. Stepwise multiple linear regression analysis was performed to derive QSAR models which were further evaluated for statistical significance and predictive power by internal and external validation. The best QSAR model was selected; having the correlation coefficient R = 0.904, standard error of estimation SEE = 0.456 and the cross validated squared correlation coefficient Q 2 = 0.739. Predictive ability of the selected model was also confirmed by the leave one out cross validation method and by leave 33 % out Q 2 = 0.688. The QSAR model indicates that the descriptors (logP, SI3, LM, and DVZ) play an important role in the CRTh2 receptor antagonist activities. Results of the present study may be useful in the designing of more potent 2,4-disubstituted phenoxyacetic acid derivatives as CRTh2 receptor antagonist agents.

[1] Birkinshaw, T. N., Teague, S. J., Beech, C., Bonnert, R. V., Hill, S., Patel, A., Reakes, S., Sanganee, H., Dougall, L. G., Phillips, T. T., Salter, S., Schmidt, E., Arrowsmith, E. C., Carrillo, J. J., Bell, F. M., Paine, S. W., & Weaver, R. (2006). Discovery of potent CRTh2 (DP2) receptor antagonists. Bioorganic & Medicinal Chemistry Letters, 16, 4287–4290. DOI: 10.1016/j.bmcl.2006.05.062. http://dx.doi.org/10.1016/j.bmcl.2006.05.06210.1016/j.bmcl.2006.05.062Search in Google Scholar PubMed

[2] Hata, A. N., & Breyer, R. M. (2004). Pharmacology and signaling of prostaglandin receptors: multiple roles in inflammation and immune modulation. Pharmacology & Therapeutics, 103, 147–166. DOI: 10.1016/j.pharmthera.2004.06.003. http://dx.doi.org/10.1016/j.pharmthera.2004.06.00310.1016/j.pharmthera.2004.06.003Search in Google Scholar PubMed

[3] Jain, A. K., Ravichandran, V., Singh, R., Sharma, S., Mourya, V. K., & Agrawal, R. K. (2008). QSAR study of disubstituted N6-cyclopentyladenine analogues as a adenosine A1 receptor antagonist. Digest Journal of Nanomaterials and Biostructures, 3, 63–73. Search in Google Scholar

[4] Kostenis, E., & Ulven, T. (2006). Emerging roles of DP and CRTH2 in allergic inflammation. Trends in Molecular Medicine, 12, 148–158. DOI: 10.1016/j.molmed.2006.02.005. http://dx.doi.org/10.1016/j.molmed.2006.02.00510.1016/j.molmed.2006.02.005Search in Google Scholar PubMed

[5] Lewis, R. A., Soter, N. A., Diamond, P. T., Austen, K. F., Oates, J. A., & Roberts, L. J. (1982). Prostaglandin D2 generation after activation of rat and human mast cells with anti-IgE. Journal of Immunology, 129, 1627–1631. 10.4049/jimmunol.129.4.1627Search in Google Scholar

[6] Murray, J. J., Tonnel, A. B., Brash, A. R., Roberts, L. J., Gosset, P., Workman, R., Capron, A., & Oates, J. A. (1986). Release of prostaglandin D2 into human airways during acute antigen challenge. The New England Journal of Medicine, 315, 800–804. http://dx.doi.org/10.1056/NEJM19860925315130410.1056/NEJM198609253151304Search in Google Scholar PubMed

[7] Paril, A. L. (2003). HIV-1 integrase inhibition: Binding sites, structure activity relationships and future perspectives. Current Medicinal Chemistry, 10, 1811–1824. DOI: 10.2174/0929867033457043. http://dx.doi.org/10.2174/092986703345704310.2174/0929867033457043Search in Google Scholar PubMed

[8] Ravichandran, V., & Agrawal, R. K. (2007). Predicting anti-HIV activity of PETT derivatives: CoMFA approach. Bioorganic & Medicinal Chemistry Letters, 17, 2197–2202. DOI: 10.1016/j.bmcl.2007.01.103. http://dx.doi.org/10.1016/j.bmcl.2007.01.10310.1016/j.bmcl.2007.01.103Search in Google Scholar PubMed

[9] Ravichandran, V., Jain, P. K., Mourya, V. K.,& Agrawal, R. K. (2007a). QSAR study on some arylsulfonamides as anti-HIV agents. Medicinal Chemistry Research, 16, 342–351. DOI: 10.1007/s00044-007-9034-7. http://dx.doi.org/10.1007/s00044-007-9034-710.1007/s00044-007-9034-7Search in Google Scholar

[10] Ravichandran, V., Mourya, V. K., & Agrawal, R. K. (2007b). QSAR study of novel 1,1,3-trioxo-[1,2,4]-thiadiazine (TTDs) analogues as potent anti-HIV agents. ARKIVOC, 2007, 204–212. 10.3998/ark.5550190.0008.e19Search in Google Scholar

[11] Ravichandran, V., Mourya, V. K., & Agrawal, R. K. (2007c). QSAR prediction of HIV-1 reverse transcriptase inhibitory activity of benzoxazinone derivatives. Internet Electronic Journal of Molecular Design, 6, 363–374. Search in Google Scholar

[12] Ravichandran, V., Mourya, V. K., & Agrawal, R. K. (2008a). QSAR modeling of HIV-1 reverse transcriptase inhibitory activity with PETT derivatives. Digest Journal of Nanomaterials and Biostructures, 3, 9–17. Search in Google Scholar

[13] Ravichandran, V., Mourya, V. K., & Agrawal, R. K. (2008b). QSAR analysis of 6-aryl-2,4-dioxo-5-hexenoic acids as HIV-1 integrase inhibitors. Indian Journal of Pharmaceutical Education & Research, 42, 133–140. Search in Google Scholar

[14] Ravichandran, V., Prashanthakumar, B. R., Sankar, S., & Agrawal, R. K. (2008c). Comparative molecular similarity indices analysis for predicting anti-HIV activity of phenyl ethyl thiourea (PET) derivatives. Medicinal Chemistry Research, 17, 1–11. DOI: 10.1007/s00044-007-9087-7. http://dx.doi.org/10.1007/s00044-007-9087-710.1007/s00044-007-9087-7Search in Google Scholar

[15] Ravichandran, V., Mourya, V. K., & Agrawal, R. K. (2009). Prediction of HIV-1 protease inhibitory activity of 4-hydroxy-5,6-dihydropyran-2-ones: QSAR study. Journal of Enzyme Inhibition and Medicinal Chemistry, (in press). Search in Google Scholar

[16] Robarge, M. J., Bom, D. C., Tumey, L. N., Varga, N., Gleason, E., Silver, D., Song, J., Murphy, S. M., Ekema, G., Doucette, C., Hanniford, D., Palmer, M., Pawlowski, G., Danzig, J., Loftus, M., Hunady, K., Sherf, B. A., Mays, R. W., Stricker-Krongrad, A., Brunden, K. R., Harrington, J. J., & Bennani, Y. L. (2005). Isosteric ramatroban analogs: selective and potent CRTh2 antagonists. Bioorganic & Medicinal Chemistry Letters, 15, 1749–1753. DOI: 10.1016/j.bmcl.2004.12.055. http://dx.doi.org/10.1016/j.bmcl.2004.12.05510.1016/j.bmcl.2004.12.055Search in Google Scholar PubMed

[17] Sahu, K. K., Ravichandran, V., Mourya, V. K. & Agrawal, R.K. (2007). QSAR analysis of caffeoyl naphthalene sulphonamide derivatives as HIV-1 Integrase inhibitors. Medicinal Chemistry Research, 15, 418–430. DOI: 10.1007/s00044-006-0020-2. http://dx.doi.org/10.1007/s00044-006-0020-210.1007/s00044-006-0020-2Search in Google Scholar

[18] Sahu, K. K., Ravichandran, V., Jain, P. K., Sharma, S., Mourya, V. K., & Agrawal, R. K. (2008). QSAR analysis of chicoric acid derivatives as HIV-1 integrase inhibitors. Acta Chimica Slovenica, 55, 138–145. Search in Google Scholar

[19] Sugimoto, H., Shichijo, M., Iino, T., Manabe, Y., Watanabe, A., Shimazaki, M., Gantner, F., & Bacon, K. B. (2003). An orally-bioavailable small molecule antagonist of CRTh2, ramatroban (BAY U3405), inhibits prostaglandin D2-induced eosinophil migration in vitro. Journal of Pharmacology and Experimental Therapeutics, 305, 347–352. DOI: 10.1124/jpet.102.046748. http://dx.doi.org/10.1124/jpet.102.04674810.1124/jpet.102.046748Search in Google Scholar PubMed

[20] Tropsha, A., Gramatica, P., & Gombar, V. K. (2003). The importance of being earnest: Validation is the absolute essential for successful application and interpretation of QSPR models. QSAR & Combinatorial Science, 22, 69–77. DOI: 10.1002/qsar.200390007. http://dx.doi.org/10.1002/qsar.20039000710.1002/qsar.200390007Search in Google Scholar

[21] Ulven, T., & Kostenis, E. (2005). Minor structural modifications convert the dual TP/CRTh2 antagonist ramatroban into a highly selective and potent CRTh2 antagonist. Journal of Medicinal Chemistry, 48, 897–900. DOI: 10.1021/jm049036i. http://dx.doi.org/10.1021/jm049036i10.1021/jm049036iSearch in Google Scholar PubMed

[22] Ulven, T., Receveur, J.-M., Grimstrup, M., Rist, Ø., Frimurer, T. M., Gerlach, L.-O., Mathiesen, J. M., Kostenis, E., Uller, E., & Högberg, E. (2006). Novel selective orally active CRTh2 antagonists for allergic inflammation developed from in silico derived hits. Journal of Medicinal Chemistry, 49, 6638–6641. DOI: 10.1021/jm060657g. http://dx.doi.org/10.1021/jm060657g10.1021/jm060657gSearch in Google Scholar PubMed

Published Online: 2009-5-27
Published in Print: 2009-8-1

© 2009 Institute of Chemistry, Slovak Academy of Sciences

Articles in the same Issue

  1. GC-MS analyses of flower ether extracts of Prunus domestica L. and Prunus padus L. (Rosaceae)
  2. A novel kinetic-spectrophotometric method for determination of nitrites in water
  3. Characterization of recombinant antibodies for detection of TNT and its derivatives
  4. Improvements in the selection of real components forming a substitute mixture for petroleum fractions
  5. Chemical evaluation of seeded fruit biomass of oil pumpkin (Cucurbita pepo L. var. Styriaca)
  6. Application of 31P NMR for added polyphosphate determination in pork meat
  7. Estimation of composition, coordination model, and stability constant of some metal/phosphate complexes using spectral and potentiometric measurements
  8. Synthesis, characterization, and anti-tumor activities of some transition metal(II) complexes with podophyllic acid hydrazide
  9. Artificial neural network prediction of steric hindrance parameter of polymers
  10. Immobilization of porphyrins in poly(hydroxymethylsiloxane)
  11. Preparation and characterization of porous cordierite for potential use in cellular ceramics
  12. Characterization of NiFe2O4 nanoparticles synthesized by various methods
  13. QSAR analysis of 1,3-diaryl-2-propen-1-ones and their indole analogs for designing potent antibacterial agents
  14. QSAR study of 2,4-disubstituted phenoxyacetic acid derivatives as a CRTh2 receptor antagonists
  15. Comparison of isothermal and non-isothermal chemiluminescence and differential scanning calorimetry experiments with benzoyl peroxide
  16. Wettability of plasma-polymerized vinyltriethoxysilane film
  17. A spectrofluorimetric method for the determination of acitretin in pharmaceuticals
  18. Fatty acid profile of Trichosanthes kirilowii Maxim. seed oil
  19. Determination of the enthalpy of fusion of K3TaO2F4 and KTaF6
Downloaded on 27.11.2025 from https://www.degruyterbrill.com/document/doi/10.2478/s11696-009-0030-x/pdf?lang=en
Scroll to top button