Home Wettability of plasma-polymerized vinyltriethoxysilane film
Article
Licensed
Unlicensed Requires Authentication

Wettability of plasma-polymerized vinyltriethoxysilane film

  • Soňa Lichovníková EMAIL logo , Jan Studýnka and Vladimír Čech
Published/Copyright: May 27, 2009
Become an author with De Gruyter Brill

Abstract

Plasma-polymerized films of vinyltriethoxysilane were surface characterized using the sessile drop technique. The surface free energy and its components were evaluated using the Owens-Wendt-Kaelble geometric mean method, Wu harmonic mean method, and van Oss, Chaudhury, and Good acid-base theory. Influence of deposition conditions on the surface free energy was demonstrated in the study. Improved wettability of the films was related to the diminished concentration of apolar methyl groups in plasma polymers. An increased concentration of carbonyl and hydroxyl groups resulted in a very small improvement of the polar component.

[1] Bismarck, A., Kumru, M. E., & Springer, J. (1999). Characterization of several polymer surfaces by streaming potential and wetting measurements: some reflections on acid-base interactions. Journal of Colloid and Interface Science, 217, 377–387. DOI: 10.1006/jcis.1999.6345. http://dx.doi.org/10.1006/jcis.1999.634510.1006/jcis.1999.6345Search in Google Scholar PubMed

[2] Broutman, L. J., & Agarwal, B. D. (1974). A theoretical study of the effect of an interface on the properties of composites. Polymer Engineering & Science, 14, 581–588. DOI: 10.1002/pen.760140808. http://dx.doi.org/10.1002/pen.76014080810.1002/pen.760140808Search in Google Scholar

[3] Cech, V., Prikryl, R., Balkova, R., Vanek, J., & Grycova, A. (2003). The influence of surface modifications of glass on glass fiber/polyester interphase properties. Journal of Adhesion Science and Technology, 17, 1299–1320. DOI: 10.1163/156856103769172751. http://dx.doi.org/10.1163/15685610376917275110.1163/156856103769172751Search in Google Scholar

[4] Cech, V. (2007). Plasma-polymerized organosilicones as engineered interlayers in glass fiber/polyester composites. Composite Interfaces, 14, 321–334. DOI: 10.1163/156855407780452850. http://dx.doi.org/10.1163/15685540778045285010.1163/156855407780452850Search in Google Scholar

[5] Cech, V., Zemek, J., & Perina, V. (2008). Chemistry of plasma-polymerized vinyltriethoxysilane controlled by deposition conditions. Plasma Processes and Polymers, 5, 745–752. DOI: 10.1002/ppap.200800007. http://dx.doi.org/10.1002/ppap.20080000710.1002/ppap.200800007Search in Google Scholar

[6] Correia, N. T., Moura Ramos, J. J., Saramago, B. J. V., & Calado, J. C. G. (1997). Estimation of the surface tension of a solid: Application to a liquid crystalline polymer. Journal of Colloid and Interface Science, 189, 361–369. DOI: 10.1006/jcis.1997.4857. http://dx.doi.org/10.1006/jcis.1997.485710.1006/jcis.1997.4857Search in Google Scholar

[7] Garbassi, F., Morra, M., & Occhiello, E. (1998). Polymer Surfaces. New York: Wiley. Search in Google Scholar

[8] Kaelble, D. H. (1970). Dispersion-polar surface tension properties of organic solids. Journal of Adhesion, 2, 66–81. http://dx.doi.org/10.1080/002184670854458210.1080/0021846708544582Search in Google Scholar

[9] Kaelble, D. H., & Cirlin, E. H. (1971). Dispersion and polar contributions to surface tension of poly(methylene oxide) and Na-treated polytetrafluorethylene. Journal of Polymer Science Part A-2: Polymer Physics, 9, 363–368. DOI: 10.1002/pol.1971.160090210. http://dx.doi.org/10.1002/pol.1971.16009021010.1002/pol.1971.160090210Search in Google Scholar

[10] Kim, J.-K., & Mai, Y.-W. (1998). Engineered interfaces in fiber reinforced composites (pp. 5–16). Amsterdam: Elsevier. http://dx.doi.org/10.1016/B978-008042695-2/50003-810.1016/B978-008042695-2/50003-8Search in Google Scholar

[11] Labronici, M., & Ishida, H. (1994). Toughening composites by fibre coating: a review. Composite Interfaces, 2, 199–234. 10.1163/156855494X00094Search in Google Scholar

[12] Marsden, J. G. (1990). In I. Skeist (Ed.), Handbook of adhesives (pp. 536–582). New York: Chapman & Hall. Search in Google Scholar

[13] Mittal, K. L. (ed) (2006). Contact angle, wettability and adhesion, Vol. 4. Leiden: VSP/Brill. 10.1201/b12166Search in Google Scholar

[14] Owens, D. K., & Wendt, R. C. (1969). Estimation of the surface free energy of polymers. Journal of Applied Polymer Science, 13, 1741–1747. DOI: 10.1002/app.1969.070130815. http://dx.doi.org/10.1002/app.1969.07013081510.1002/app.1969.070130815Search in Google Scholar

[15] van Oss, C. J., Good, R. J., & Chaudhury, M. K. (1986). The role of van der Waals forces and hydrogen bonds in “hydrophobic interactions” between biopolymers and low energy surfaces. Journal of Colloid and Interface Science, 111, 378–390. DOI: 10.1016/0021-9797(86)90041-X. http://dx.doi.org/10.1016/0021-9797(86)90041-X10.1016/0021-9797(86)90041-XSearch in Google Scholar

[16] van Oss, C. J., Chaudhury, M. K., & Good, R. J. (1987). Monopolar surfaces. Advances in Colloid and Interface Science, 28, 35–64. DOI: 10.1016/0001-8686(87)80008-8. http://dx.doi.org/10.1016/0001-8686(87)80008-810.1016/0001-8686(87)80008-8Search in Google Scholar

[17] Wu, S. (1971). Calculation of interfacial tension in polymer systems. Journal of Polymer Science Part C: Polymer Symposia, 34, 19–30. 10.1002/polc.5070340105Search in Google Scholar

[18] Wu, S. (1982). Polymer interface and adhesion. New York: Marcel Dekker. Search in Google Scholar

Published Online: 2009-5-27
Published in Print: 2009-8-1

© 2009 Institute of Chemistry, Slovak Academy of Sciences

Articles in the same Issue

  1. GC-MS analyses of flower ether extracts of Prunus domestica L. and Prunus padus L. (Rosaceae)
  2. A novel kinetic-spectrophotometric method for determination of nitrites in water
  3. Characterization of recombinant antibodies for detection of TNT and its derivatives
  4. Improvements in the selection of real components forming a substitute mixture for petroleum fractions
  5. Chemical evaluation of seeded fruit biomass of oil pumpkin (Cucurbita pepo L. var. Styriaca)
  6. Application of 31P NMR for added polyphosphate determination in pork meat
  7. Estimation of composition, coordination model, and stability constant of some metal/phosphate complexes using spectral and potentiometric measurements
  8. Synthesis, characterization, and anti-tumor activities of some transition metal(II) complexes with podophyllic acid hydrazide
  9. Artificial neural network prediction of steric hindrance parameter of polymers
  10. Immobilization of porphyrins in poly(hydroxymethylsiloxane)
  11. Preparation and characterization of porous cordierite for potential use in cellular ceramics
  12. Characterization of NiFe2O4 nanoparticles synthesized by various methods
  13. QSAR analysis of 1,3-diaryl-2-propen-1-ones and their indole analogs for designing potent antibacterial agents
  14. QSAR study of 2,4-disubstituted phenoxyacetic acid derivatives as a CRTh2 receptor antagonists
  15. Comparison of isothermal and non-isothermal chemiluminescence and differential scanning calorimetry experiments with benzoyl peroxide
  16. Wettability of plasma-polymerized vinyltriethoxysilane film
  17. A spectrofluorimetric method for the determination of acitretin in pharmaceuticals
  18. Fatty acid profile of Trichosanthes kirilowii Maxim. seed oil
  19. Determination of the enthalpy of fusion of K3TaO2F4 and KTaF6
Downloaded on 27.11.2025 from https://www.degruyterbrill.com/document/doi/10.2478/s11696-009-0029-3/pdf?lang=en
Scroll to top button